AKT phosphorylates H3-threonine 45 to facilitate termination of gene transcription in response to DNA damage.

Nucleic Acids Res

National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence and Technology, Seoul National University, Seoul 110-799, Republic of Korea

Published: May 2015

Post-translational modifications of core histones affect various cellular processes, primarily through transcription. However, their relationship with the termination of transcription has remained largely unknown. In this study, we show that DNA damage-activated AKT phosphorylates threonine 45 of core histone H3 (H3-T45). By genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis, H3-T45 phosphorylation was distributed throughout DNA damage-responsive gene loci, particularly immediately after the transcription termination site. H3-T45 phosphorylation pattern showed close-resemblance to that of RNA polymerase II C-terminal domain (CTD) serine 2 phosphorylation, which establishes the transcription termination signal. AKT1 was more effective than AKT2 in phosphorylating H3-T45. Blocking H3-T45 phosphorylation by inhibiting AKT or through amino acid substitution limited RNA decay downstream of mRNA cleavage sites and decreased RNA polymerase II release from chromatin. Our findings suggest that AKT-mediated phosphorylation of H3-T45 regulates the processing of the 3' end of DNA damage-activated genes to facilitate transcriptional termination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482061PMC
http://dx.doi.org/10.1093/nar/gkv176DOI Listing

Publication Analysis

Top Keywords

h3-t45 phosphorylation
12
akt phosphorylates
8
dna damage-activated
8
transcription termination
8
rna polymerase
8
h3-t45
6
termination
5
transcription
5
phosphorylation
5
phosphorylates h3-threonine
4

Similar Publications

AKT phosphorylates H3-threonine 45 to facilitate termination of gene transcription in response to DNA damage.

Nucleic Acids Res

May 2015

National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence and Technology, Seoul National University, Seoul 110-799, Republic of Korea

Post-translational modifications of core histones affect various cellular processes, primarily through transcription. However, their relationship with the termination of transcription has remained largely unknown. In this study, we show that DNA damage-activated AKT phosphorylates threonine 45 of core histone H3 (H3-T45).

View Article and Find Full Text PDF

Post-translational histone modifications are crucial for the regulation of numerous DNA-templated processes, and are thought to mediate both alteration of chromatin dynamics and recruitment of effector proteins to specific regions of the genome. In particular, histone Ser/Thr phosphorylation regulates multiple nuclear functions in the budding yeast Saccharomyces cerevisiae, including transcription, DNA damage repair, mitosis, apoptosis and sporulation. Although modifications to chromatin during replication remain poorly understood, a number of recent studies have described acetylation of the histone H3 N-terminal alpha-helix (alphaN helix) at Lys 56 as a modification that is important for maintenance of genomic integrity during DNA replication and repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!