Automatic segmentation of myocardium from black-blood MR images using entropy and local neighborhood information.

PLoS One

Cardiovascular Sciences Research Centre, St George's, University of London, London SW17 0RE, United Kingdom; Biomedical Research Unit, Royal Brompton Hospital and Imperial College London, London SW7 2AZ, United Kingdom.

Published: March 2016

By using entropy and local neighborhood information, we present in this study a robust adaptive Gaussian regularizing Chan-Vese (CV) model to segment the myocardium from magnetic resonance images with intensity inhomogeneity. By utilizing the circular Hough transformation (CHT) our model is able to detect epicardial and endocardial contours of the left ventricle (LV) as circles automatically, and the circles are used as the initialization. In the cost functional of our model, the interior and exterior energies are weighted by the entropy to improve the robustness of the evolving curve. Local neighborhood information is used to evolve the level set function to reduce the impact of the heterogeneity inside the regions and to improve the segmentation accuracy. An adaptive window is utilized to reduce the sensitivity to initialization. The Gaussian kernel is used to regularize the level set function, which can not only ensure the smoothness and stability of the level set function, but also eliminate the traditional Euclidean length term and re-initialization. Extensive validation of the proposed method on patient data demonstrates its superior performance over other state-of-the-art methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374880PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120018PLOS

Publication Analysis

Top Keywords

local neighborhood
12
level set
12
set function
12
entropy local
8
automatic segmentation
4
segmentation myocardium
4
myocardium black-blood
4
black-blood images
4
images entropy
4
neighborhood entropy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!