Purpose: To investigate the effect of mutations in SLC4A11 on cellular localization of the protein, mitochondrial function, and apoptosis due to oxidative stress. Mutations in SLC4A11 have been associated with 2 different forms of corneal endothelial dystrophy that lead to degeneration of the corneal endothelium, causing opacity of the cornea and gradual vision loss.

Methods: HEK 293 cells were transfected with wild-type SLC4A11 or mutants, Ser213Leu, Arg233Cys, Gly418Asp, and Thr584Lys, and exposed to oxidative stress. Cellular localization of the proteins was detected by confocal microscopy, whereas mitochondrial dysfunction, reactive oxygen species (ROS) generation, and apoptosis were analyzed by flow cytometry and a colorimetric assay. Expressions of antioxidant genes were quantitated by real-time polymerase chain reaction.

Results: Although wild-type SLC4A11 was localized on the cell membrane, mutant proteins were found diffused in the cytoplasm. Mutations in SLC4A11 caused an increase in generation of ROS and mitochondrial dysfunction due to oxidative stress. NRF2, HO-1, and NQO expression decreased significantly, and a higher rate of apoptosis was detected in cells with mutant proteins under oxidative stress.

Conclusions: Our data suggest that mutations in SLC4A11 cause retention of the protein in the cytoplasm and generate increased reactive oxygen species. We found that cells containing mutant SLC4A11 are more vulnerable to oxidative and mitochondrial damage, less able to overcome oxidative stress through the expression of sufficient levels of antioxidant genes, and are more prone to apoptotic death.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ICO.0000000000000421DOI Listing

Publication Analysis

Top Keywords

mutations slc4a11
16
oxidative stress
16
corneal endothelial
8
slc4a11
8
vulnerable oxidative
8
cellular localization
8
wild-type slc4a11
8
mitochondrial dysfunction
8
reactive oxygen
8
oxygen species
8

Similar Publications

Potential Involvements of Anterior Segment Dysgenesis-Associated Genes in Primary Congenital Glaucoma.

Semin Ophthalmol

December 2024

Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L V Prasad Eye Institute, Hyderabad, Telangana, India.

Background: The anterior segment of the eye plays a crucial role in maintaining the normal intraocular pressure and vision. Developmental defects in the anterior segment structures lead to anterior segment dysgenesis (ASD) and primary congenital glaucoma (PCG), which share overlapping clinical features. Several genes have been mapped and characterized in ASD, some of which are also involved in other glaucoma phenotypes.

View Article and Find Full Text PDF

Trio-based whole-exome sequencing of 200 Chinese patients with keratoconus.

Exp Eye Res

November 2024

Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, 100005, China.

Keratoconus (KC) is a complex corneal disorder with a well-recognized genetic component. In this study, we aimed to expand the genetic spectrum of 200 Chinese patients with keratoconus and their unaffected parents. Trio-based whole-exome sequencing was performed in 200 patients with sporadic keratoconus and their unaffected parents.

View Article and Find Full Text PDF

We present the case of a 37-year-old woman who underwent bilateral penetrating keratoplasty for congenital hereditary endothelial dystrophy at the age of 10 years. Over the subsequent 27 years, the patient's vision slowly deteriorated. Our examination revealed decompensation of the right corneal graft.

View Article and Find Full Text PDF

Purpose: Fuchs endothelial corneal dystrophy (FECD) is a progressive blinding disorder, characterized by increased corneal endothelial excrescences (guttae), corneal endothelial cell loss, and edema. These symptoms are hypothesized to be caused by changes in the extracellular matrix (ECM) and mitochondrial dysfunction in the corneal endothelium. Despite this clinical and biological relevance, a comprehensive animal model that recapitulates all the major disease characteristics is currently unavailable.

View Article and Find Full Text PDF

Mutations in the solute linked carrier family 4 member 11 (SLC4A11) gene are associated with congenital hereditary endothelial dystrophy (CHED) and Fuchs corneal endothelial dystrophy type 4 (FECD4), both characterized by corneal endothelial cell (CEnC) dysfunction and/or cell loss leading to corneal edema and visual impairment. In this study, we characterize the impact of CHED-/FECD4-associated SLC4A11 mutations on CEnC function and SLC4A11 protein localization by generating and comparing human CEnC (hCEnC) lines expressing wild type SLC4A11 (SLC4A11WT) or mutant SLC4A11 harboring CHED-/FECD4-associated SLC4A11 mutations (SLC4A11MU). SLC4A11WT and SLC4A11MU hCEnC lines were generated to express either SLC4A11 variant 2 (V2WT and V2MU) or variant 3 (V3WT and V3MU), the two major variants expressed in ex vivo hCEnC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!