Effect of TLR4/MyD88 signaling pathway on expression of IL-1β and TNF-α in synovial fibroblasts from temporomandibular joint exposed to lipopolysaccharide.

Mediators Inflamm

Stomatological Hospital of Shandong University, Number 44, Wen Hua Xi Lu, Shandong Province, Jinan 250012, China ; Key Laboratory of Oral Biomedicine of Shandong Province, Number 44, Wen Hua Xi Lu, Shandong Province, Jinan 250012, China.

Published: April 2016

Accumulating evidence from previous studies suggested that interleukin-1 (IL-1β) and tumor necrosis factor-α (TNF-α) play an important role in pathogenesis of temporomandibular disorders (TMD). However, the cell surface receptors and the intracellular signal pathways leading to these cytokines expression are not fully understood. In the current study, we investigated the roles of Toll-like receptor 4 (TLR4) and its adaptor myeloid differentiation factor 88 (MyD88) in the expression of IL-1β and TNF-α in synovial fibroblasts (SFs) separated from rat temporomandibular joint (TMJ) with lipopolysaccharide (LPS) stimulation. The results showed that treatment with LPS could increase TLR4, MyD88, IL-1β, and TNF-α expression at both mRNA and protein levels. In addition, increased expression of IL-1β and TNF-α could be blocked by treatment with TAK-242, a blocker of TLR4 signaling, and also by MyD88 inhibitory peptide (MIP). These findings suggested that maybe TLR4/MyD88 signal transduction pathway participates in enhanced expression of IL-1 and TNF-α in patients with TMD. The activation of TLR4/MyD88 signal transduction pathway which results in production of proinflammatory factors may play a role in the pathogenesis of TMD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354974PMC
http://dx.doi.org/10.1155/2015/329405DOI Listing

Publication Analysis

Top Keywords

il-1β tnf-α
16
expression il-1β
12
tnf-α synovial
8
synovial fibroblasts
8
temporomandibular joint
8
play role
8
role pathogenesis
8
tlr4/myd88 signal
8
signal transduction
8
transduction pathway
8

Similar Publications

Cervical lymph node tuberculosis and TNF, IL8, IL10, IL12B and IFNG polymorphisms.

New Microbiol

January 2021

Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Calzada de Tlalpan 4800, Col. Sección XVI, CP 14080, Ciudad de México, México.

Cervical lymph node tuberculosis (LNTB) is the most common manifestation of extrapulmonary tuberculosis, resulting from the interaction of environmental and genetic factors. The immune response against TB is regulated by several cytokines, which have single nucleotide polymorphisms (SNPs), leading to different levels of expression. The aim of this study was to evaluate the association of LNTB with the TNF, IL8, IL10, IL12B and IFNG gene polymorphisms in Mexican patients.

View Article and Find Full Text PDF

Introduction: This study evaluated the influence of interleukin-10 (IL10) gene -1082G>A and tumor necrosis factor-alpha (TNF) gene -308G>A polymorphisms in the donor and recipients on the acute rejection (AR) episodes and delayed graft function (DGF) in kidney transplant recipients.

Materials And Methods: The IL10 -1082G>A and TNF -308G>A polymorphisms were determined in 100 kidney allograft recipients and their donors using the polymerase chain reaction-amplification refractory mutation system polymerase chain reaction-restriction fragment length polymorphism methods. Transplantation outcomes were determined in terms of AR and DGF criteria.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed blood samples from 172 RA patients and 160 healthy controls to look for variations in these genes using PCR-RFLP techniques.
  • * Results indicate that the TNF-α 308AA genotype and the TNFRII 196M/R polymorphism are connected to higher susceptibility to RA, while the TNF-α 308GG genotype is linked to greater disease severity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!