Preconcentration modeling for the optimization of a micro gas preconcentrator applied to environmental monitoring.

Anal Chem

†Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Sensors, Actuators and Microsystems Laboratory (SAMLAB), Maladière 71b, 2000 Neuchâtel, Switzerland.

Published: April 2015

This paper presents the optimization of a micro gas preconcentrator (μ-GP) system applied to atmospheric pollution monitoring, with the help of a complete modeling of the preconcentration cycle. Two different approaches based on kinetic equations are used to illustrate the behavior of the micro gas preconcentrator for given experimental conditions. The need for high adsorption flow and heating rate and for low desorption flow and detection volume is demonstrated in this paper. Preliminary to this optimization, the preconcentration factor is discussed and a definition is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5b00400DOI Listing

Publication Analysis

Top Keywords

micro gas
12
gas preconcentrator
12
optimization micro
8
preconcentration modeling
4
modeling optimization
4
preconcentrator applied
4
applied environmental
4
environmental monitoring
4
monitoring paper
4
paper presents
4

Similar Publications

As the global energy landscape shifts and sustainability becomes crucial, the offshore oil and gas sector confronts significant challenges and opportunities. This paper addresses the issues of energy efficiency and environmental impact of optimizing offshore micro-energy systems (OMIES) by proposing a multi-objective optimization model that integrates chaotic local search and particle swarm optimization (PSO). The model aims to achieve optimal scheduling of the energy system by comprehensively considering operational costs, carbon emissions, energy utilization efficiency, and energy fluctuation risks.

View Article and Find Full Text PDF

Research Progress of MEMS Gas Sensors: A Comprehensive Review of Sensing Materials.

Sensors (Basel)

December 2024

Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.

The MEMS gas sensor is one of the most promising gas sensors nowadays due to its advantage of small size, low power consumption, and easy integration. It has been widely applied in energy components, portable devices, smart living, etc. The performance of the gas sensor is largely determined by the sensing materials, as well as the fabrication methods.

View Article and Find Full Text PDF

Investigating the Impact of Polymers on Clay Flocculation and Residual Oil Behaviour Using a 2.5D Model.

Polymers (Basel)

December 2024

Key Laboratory for Enhanced Oil & Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, China.

In the process of oilfield development, the surfactant-polymer (SP) composite system has shown significant effects in enhancing oil recovery (EOR) due to its excellent interfacial activity and viscoelastic properties. However, with the continuous increase in the volume of composite flooding injection, a decline in injection-production capacity (I/P capacity) has been observed. Through the observation of frozen core slices, it was found that during the secondary composite flooding (SCF) process, a large amount of residual oil in the form of intergranular adsorption remained in the core pores.

View Article and Find Full Text PDF

A trend has been established concerning the research and development of various green and biodegradable plastics for multi-purpose applications, aiming to replace petroleum-based plastics. Herein, we report the synthesis of chitosan (CH) films using lemon juice; these were reinforced with NiZnFeO nanoparticles (NiZnFeO NPs) to obtain improved mechanical and barrier properties, facilitating their future application as sustainable, corrosion-resistant coatings for medical instruments. The synthesized NiZnFeO NPs had a crystallite size of ~29 nm.

View Article and Find Full Text PDF

This study evaluates the effects of laser parameters on the surface remelting of the Ti-3Al-2.5V alloy. A ms-laser equipped with a coaxial gas-pressure head integrated into a Swiss-type turning machine is used for the laser remelting process of cylindrical parts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!