Pulmonary hypertension (PH) complicates bronchopulmonary dysplasia (BPD) in 25% of infants. Superoxide dismutase 2 (SOD2) is an endogenous mitochondrial antioxidant, and overexpression protects against acute lung injury in adult mice. Little is known about SOD2 in neonatal lung disease and PH. C57Bl/6 mice and isogenic SOD2+/+ and SOD2-/+ mice were placed in room air (control) or 75% O2 (chronic hyperoxia, CH) for 14 days. Right ventricular hypertrophy (RVH) was assessed by Fulton's index. Medial wall thickness (MWT) and alveolar area were assessed on formalin fixed lung sections. Pulmonary artery smooth muscle cells (PASMC) were placed in 21% or 95% O2 for 24 h. Lung and PASMC protein were analyzed for SOD2 expression and activity. Oxidative stress was measured with a mitochondrially-targeted sensor, mitoRoGFP. CH lungs have increased SOD2 expression, but unchanged activity. SOD2-/+ PASMC have decreased expression and activity at baseline, but increased SOD2 expression in hyperoxia. Hyperoxia increased mitochondrial ROS in SOD2+/+ and SOD2-/+ PASMC. SOD2+/+ and SOD2-/+ CH pups induced SOD2 expression, but not activity, and developed equivalent increases in RVH, MWT, and alveolar area. Since SOD2-/+ mice develop equivalent disease, this suggests other antioxidant systems may compensate for partial SOD2 expression and activity in the neonatal period during hyperoxia-induced oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394537PMC
http://dx.doi.org/10.3390/ijms16036373DOI Listing

Publication Analysis

Top Keywords

sod2 expression
20
expression activity
16
sod2+/+ sod2-/+
12
sod2
8
pulmonary artery
8
artery smooth
8
smooth muscle
8
muscle cells
8
sod2-/+ mice
8
mwt alveolar
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!