The role that transduced mouse bone marrow stromal cells (mBMSCs) engineered to overexpress human bone morphogenetic protein 2 (BMP-2) play in healing critical-sized skeletal defects is largely unknown. We evaluated the interaction between host osteoprogenitor cells and donor mBMSCs transduced with either a lentiviral (LV) vector-expressing red fluorescent protein (RFP) with or without BMP-2 that were implanted into a critical-sized femoral defect. Radiographs taken at the time of killing were evaluated using a five-point scaled scoring system. Frozen histologic sections were analyzed to assess both the transduced cells' role in bone repair and the local osteoprogenitor response. There was complete radiographic bridging in 94% of group I (LV-RFPch-BMP-2-cmyc) and 100% of group III (recombinant human BMP-2) specimens. Radiographs demonstrated a lack of healing in group II (LV-RFPch). Mouse BMSCs transduced with an LV-RFPch-BMP-2 vector were able to induce host cells to differentiate down an osteoblastic lineage and heal a critical-sized defect. However, the donor cells appeared to be functioning as a delivery vehicle of BMP-2 rather than actually differentiating into osteoblasts capable of participating in bone repair as evidenced by a lack of colocalization of the transduced cells to the sites of skeletal repair where the host progenitor cells were found.

Download full-text PDF

Source
http://dx.doi.org/10.1038/gt.2015.14DOI Listing

Publication Analysis

Top Keywords

role transduced
8
bone marrow
8
healing critical-sized
8
bone repair
8
cells
7
bone
5
bmp-2
5
transduced
5
transduced bone
4
marrow cells
4

Similar Publications

Mutations in hnRNP A1 drive neurodegeneration and alternative RNA splicing of neuronal gene targets.

Neurobiol Dis

January 2025

Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada. Electronic address:

RNA binding protein dysfunction is a pathogenic feature of multiple neurological diseases, including multiple sclerosis (MS). Neurodegeneration (the loss of, or damage to neurons and axons) is the primary driver of disease progression in MS. Herein, we utilized a novel, neuron-specific model of neurodegeneration by transducing primary mouse neurons with mutant forms of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) identified from MS patients, including one within the M9-nuclear localization sequence of hnRNP A1 (A1(P275S)) and a second in the prion-like domain of hnRNP A1 (A1(F263S)) to test the hypothesis that neuronal hnRNP A1 dysfunction drives neurodegeneration in MS.

View Article and Find Full Text PDF

Chronic Stress Mediates Inflammatory Cytokines Alterations and Its Role in Tumorigenesis.

J Inflamm Res

January 2025

Department of Otorhinolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.

Introduction: Prolonged psychological stress is closely associated with cancer due to its role in promoting the release of stress hormones through the sustained activation of the sympathetic-adrenal-medullary system. These hormones interact with receptors on inflammatory cells, leading to the activation of key signaling pathways, including the transcription factors signal transducer and activator of transcription 3 (STAT-3) and kappa-light-chain-enhancer of activated B cells (NF-κB). These factors drive the production of pro-inflammatory substances, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which can influence the initiation and progression of cancer.

View Article and Find Full Text PDF

Integration of DNA replication with DNA repair, cell cycle progression, and other biological processes is crucial for preserving genome stability and fundamentally important for all life. Ataxia-telangiectasia mutated and RAD3-related (ATR) and its partner ATR-interacting protein (ATRIP) function as a critical proximal sensor and transducer of the DNA Damage Response (DDR). Several ATR substrates, including p53 and CHK1, are crucial for coordination of cell cycle phase transitions, transcription, and DNA repair when cells sustain DNA damage.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), an X-linked neuromuscular disorder, characterised by progressive immobility, chronic inflammation and premature death, is caused by the loss of the mechano-transducing signalling molecule, dystrophin. In non-contracting cells, such as neurons, dystrophin is likely to have a functional role in synaptic plasticity, anchoring post-synaptic receptors. Dystrophin-expressing hippocampal neurons are key to cognitive functions such as emotions, learning and the consolidation of memories.

View Article and Find Full Text PDF

Bismuth-layered ferroelectric nanomaterials exhibit great potential for piezo-photocatalysis. However, a major challenge lies in the difficulty of recovering the catalytic powders, raising concerns regarding secondary pollution of water. In this work, a novel hierarchical porous ferroelectric ceramic containing {110} surface-exposed BiNdTiO (BIT-Nd) nanosheet arrays is grown on a porous ceramic matrix for efficient and recyclable piezo-photocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!