A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Incorporation of a Metal Oxide Interlayer using a Virus-Templated Assembly for Synthesis of Graphene-Electrode-Based Organic Photovoltaics. | LitMetric

Unlabelled: Transition metal oxide (TMO) thin films have been exploited as interlayers for charge extraction between electrodes and active layers in organic photovoltaic (OPV) devices. Additionally, graphene-electrode-based OPVs have received considerable attention as a means to enhance device stability. However, the film deposition process of a TMO thin-film layer onto the graphene electrode is highly restricted owing to the hydrophobic nature of the graphene surface; thus, the preparation of the device should rely on a vacuum process that is incompatible with solution processing. In this study, we present a novel means for creating a thin tungsten oxide (WO3 ) interlayer on a graphene electrode by employing an engineered biotemplate of M13 viruses, whereby nondestructive functionalization of the graphene and uniform synthesis of a WO3 thin interlayer are concurrently achieved. As a result, the incorporated virus-templated WO3 interlayer exhibited solar-conversion efficiency that was 20 % higher than that of conventional OPVs based on the use of a (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (

Pedot: PSS) interlayer. Notably, bilayer-structured OPVs with synergistically integrated WO3 /PEDOT:PSS achieved >60 % enhancement in device performance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201403487DOI Listing

Publication Analysis

Top Keywords

metal oxide
8
graphene electrode
8
wo3 interlayer
8
interlayer
5
incorporation metal
4
oxide interlayer
4
interlayer virus-templated
4
virus-templated assembly
4
assembly synthesis
4
synthesis graphene-electrode-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!