Background: Approximately 2 million chronic haemodialysis patients produce over 2,000,000 tons of waste per year that includes about 600,000 tons of potentially hazardous waste. The aim of the present study was to analyse the characteristics of the waste that is produced through chronic haemodialysis in an effort to identify strategies to reduce its environmental and financial impact.

Methods: The study included three dialysis machines and disposables for bicarbonate dialysis, haemodiafiltration (HFR) and lactate dialysis. Hazardous waste is defined as waste that comes into contact with bodily fluids. The weight and cost of waste management was evaluated by various policies of differentiation, ranging from a careful-optimal differentiation to a careless one. The amount of time needed for optimal management was recorded in 30 dialysis sessions. Non-hazardous materials were assessed for potential recycling.

Results: The amount of plastic waste that is produced per dialysis session ranges from 1.5 to 8 kg (from 1.1 to 8 kg of potentially hazardous waste), depending upon the type of dialysis machine and supplies, differentiation and emptying policies. The financial cost of waste disposal is high, and is mainly related to hazardous waste disposal, with costs ranging from 2.2 to 16 Euro per session (2.7-21 USD) depending on the waste management policy. The average amount of time needed for careful, optimal differentiation disposal is approximately 1 minute for a haemodialysis session and 2 minutes for HFR. The ecological cost is likewise high: less than one-third of non-hazardous waste (23-28%) is potentially recyclable, while the use of different types of plastic, glues, inks and labels prevents the remaining materials from being recycled.

Conclusion: Acknowledging the problem of waste management in dialysis could lead to savings of hundreds of millions of Dollars and to the reuse and recycling of hundreds of tons of plastic waste per year on a world-wide scale with considerable financial and ecological savings.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ndt/gfv031DOI Listing

Publication Analysis

Top Keywords

waste
16
hazardous waste
16
waste management
12
financial ecological
8
dialysis
8
chronic haemodialysis
8
waste year
8
waste produced
8
cost waste
8
amount time
8

Similar Publications

Alive in biliary fluid in patient: A case report.

World J Gastroenterol

January 2025

Department of Gastroenterology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, Guangdong Province, China.

Background: (), is a prevalent parasitic worm that infects humans. It is found all over the world, particularly in tropical and subtropical areas. Strongyloidiasis is caused mostly by the parasitic nematode .

View Article and Find Full Text PDF

Improving the binding affinity of plastic degrading cutinase with polyethylene terephthalate (PET) and polyurethane (PU); an in-silico study.

Heliyon

January 2025

Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India.

Plastic pollution is a worrying problem, and its degradation is a laborious process. Although enzymatic plastic breakdown is a sustainable method, drawbacks such as numerous plastic kinds of waste make the degradation challenging. Therefore, a multi-plastic degrading (MPD) enzyme becomes necessary.

View Article and Find Full Text PDF

Fire safety in healthcare facilities is extremely important due to limited evacuation capacity of occupants. Therefore, poor fire safety precautions lead to more fatalities and financial losses. This study introduces an effective fire risk management approach for healthcare buildings utilizing an interval valued neutrosophic-fuzzy framework.

View Article and Find Full Text PDF

This study aims to investigate the crystallographic properties of hydroxyapatite (HAp) and strontium-substituted hydroxyapatite (SrHAp) obtained from sand lobster shells (SLS) using various analytical methods. HAp and SrHAp were synthesized by the hydrothermal method using sand lobster () shell waste as a calcium precursor. SLS were calcined at 0 °C, 600 °C, 800 °C, and 1000 °C and characterized by X-ray diffraction (XRD).

View Article and Find Full Text PDF

The use of eggshells as a primary source for developing value-added materials has garnered significant attention in recent years due to their effectiveness as an excellent adsorbent and support. In this study, the Solid-State Dispersion (SSD) method was utilized to prepare composite photocatalysts of eggshells (ES)/TiO₂ in various ratios. TiO₂ and eggshell photocatalysts were also employed as control samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!