Every so often, the results obtained from investigations into the effects of varying environmental conditions on the tree growth rate at the same sites and on the change in the carbon balance in plants, using traditional methods, are found to differ widely. We believe that the reason for the ambiguity of the data has to do with failure to account for the role of the residual CO2 (and H2O) in the tree wood exhibiting a climate response. In our earlier work, the results of a laser photoacoustic gas analysis of CO2 and H2O vacuum-desorbed from disc tree rings of evergreen conifer trees were presented. In this paper, laser photoacoustic measurements of tree ring gases in deciduous conifer trees and CO2 carbon isotope composition determined by means of a mass spectrometer are given. Conclusions are made regarding the response of annual larch CO2 disc tree ring distributions to climatic parameters (temperatures and precipitation). The data about the CO2 disc content for different sites are compared.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384077 | PMC |
http://dx.doi.org/10.3390/bios5010001 | DOI Listing |
Anal Chem
January 2025
International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
The photoacoustic spectroscopy (PAS) system commonly enhances the efficiency of optical-acoustic-electrical energy conversion by increasing the laser power, optimizing the resonance characteristics of the photoacoustic cell (PAC), and improving the sensitivity of acoustic sensors. However, conventional systems using a single-microphone or a dual-microphone differential setup for point sampling of the photoacoustic signal fail to account for its spatial distribution, leading to a loss of spatial gain. Drawing on microphone array theory derived from sonar technology, this study, for the first time, presents a PAS sensing system based on a four-microphone array, which is applied to detect chloroform gas.
View Article and Find Full Text PDFSmall
January 2025
Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China.
Near-infrared (NIR)-triggered type-I photosensitizers are crucial to address the constraints of hypoxic tumor microenvironments in phototherapy; however, significant challenges remain. By selecting an electron-deficient unit, a matched energy gap in the upper-level state is instrumental in boosting the efficiency of intersystem crossing for the type-I electron transfer process. 2-Cyanothiazole, an electron acceptor, is covalently linked with N, N-diphenyl-4-(thiophen-2-yl)aniline to yield a multifunctional photosensitizer (TTNH) that exhibits intrinsic NIR absorbance and compatible T energy levels, facilitating both radiative and nonradiative transitions.
View Article and Find Full Text PDFPhotoacoustics
February 2025
College of Engineering, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
A novel balloon-type photoacoustic cell (BTPAC) is proposed to facilitate the detection limitations of acetylene (CH) gas achieving ppb level. Here, an ellipsoidal photoacoustic cavity is employed as the platform for gas-light interaction. By strategically directing the excitation source towards the focal point of the ellipsoidal cavity, ensuring its trajectory traverses the focal point upon each reflection from the interior walls.
View Article and Find Full Text PDFEnergy Fuels
January 2025
PolySense Lab, Dipartimento Interateneo di Fisica, University and Polytechnic of Bari, Via Amendola 173, Bari 70126, Italy.
A compact and portable gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) for the detection of methane (C1), ethane (C2), and propane (C3) in natural gas (NG)-like mixtures is reported. An interband cascade laser (ICL) emitting at 3367 nm is employed to target absorption features of the three alkanes, and partial least-squares regression analysis is employed to filter out spectral interferences and matrix effects characterizing the examined gas mixtures. Spectra of methane, ethane, and propane mixtures diluted in nitrogen are employed to train and test the regression algorithm, achieving a prediction accuracy of ∼98%, ∼96%, and ∼93% on C1, C2, and C3, respectively.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
Cervical cancer, the most common gynecological malignancy, significantly and adversely affects women's physical health and well-being. Traditional surgical interventions and chemotherapy, while potentially effective, often entail serious side effects that have led to an urgent need for novel therapeutic methods. Photothermal therapy (PTT) has emerged as a promising approach due to its ability to minimize damage to healthy tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!