Engineered human T-cells are a promising therapeutic modality for cancer immunotherapy. T-cells expressing chimeric antigen receptors combined with additional genes to enhance T-cell proliferation, survival, or tumor targeting may further improve efficacy but require multiple stable gene transfer events. Methods are therefore needed to increase production efficiency for multiplexed engineered cells. In this work, we demonstrate multiplexed, non-viral gene transfer to a human T-cell line with efficient selection (∼ 50%) of cells expressing up to three recombinant open reading frames. The efficient introduction of multiple genes to T-cells was achieved using the Sleeping Beauty transposon system delivered in minicircles by nucleofection. We demonstrate rapid selection for engineered cells using methotrexate (MTX) and a mutant human dihydrofolate reductase resistant to methotrexate-induced metabolic inhibition. Preferential amplification of cells expressing multiple transgenes was achieved by two successive rounds of increasing MTX concentration. This non-viral gene transfer method with MTX step selection can potentially be used in the generation of clinical-grade T-cells housing multiplexed genetic modifications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.25538 | DOI Listing |
Mol Biol Rep
January 2025
Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
This study investigated the consequences of perinatal exposure to Aroclor 1221 (A1221), a weakly estrogenic polychlorinated biphenyl (PCB) mixture and known endocrine-disrupting chemical (EDC), in female rats. Previous work has shown behavioral and physiological effects of A1221, and the current study extended this work to comprehensive transcriptomic profiling of two hypothalamic regions involved in the control of reproduction: the arcuate nucleus (ARC) and anteroventral periventricular nucleus (AVPV). Female Sprague-Dawley rats were fed a cookie treated with a small volume of A1221 (1 mg/kg) or vehicle (3% DMSO in sesame oil) during pregnancy from gestational days 8-18 and after birth from postnatal (P) days 1-21, exposing the offspring via placental and lactational transfer.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:
Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
Iron-loaded diatomite (Fe-DE) was developed as the innovative material to enhance anammox granular sludge (AnGS) and mainstream anammox performance. By adding Fe-DE with the Fe:DE ratio of 1:20 and the dosage of 3 g/L, the start-up period of mainstream anammox process was shortened from 29 d to 17 d and its nitrogen removal rate was increased from 0.234 kg N/(m·d) to 0.
View Article and Find Full Text PDFEnviron Res
January 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China. Electronic address:
Dinotefuran (DIN) is toxic to non-target organisms and accelerates the evolution of antibiotic resistance, which poses a problem for the stable operation of the activated sludge process in wastewater treatment plants (WWTPs). However, the emergence and the transfer mechanism of antibiotic resistance genes (ARGs) in activated sludge systems under DIN stress remains unclear. Thus, in the study, the potential impact of DIN on ARGs and virulence factor genes (VFGs) in aerobic granular sludge (AGS) was investigated in depth using metagenomic binning and functional modules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!