Valence bond and enzyme catalysis: a time to break down and a time to build up.

Chemistry

Institute for Drug Design, School of Pharmacy, The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Jerusalem 91120 (Israel), Fax: (+972) 2-675-7076.

Published: May 2015

Understanding enzyme catalysis and developing ability to control of it are two great challenges in biochemistry. A few successful examples of computational-based enzyme design have proved the fantastic potential of computational approaches in this field, however, relatively modest rate enhancements have been reported and the further development of complementary methods is still required. Herein we propose a conceptually simple scheme to identify the specific role that each residue plays in catalysis. The scheme is based on a breakdown of the total catalytic effect into contributions of individual protein residues, which are further decomposed into chemically interpretable components by using valence bond theory. The scheme is shown to shed light on the origin of catalysis in wild-type haloalkane dehalogenase (wt-DhlA) and its mutants. Furthermore, the understanding gained through our scheme is shown to have great potential in facilitating the selection of non-optimal sites for catalysis and suggesting effective mutations to enhance the enzymatic rate.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201406236DOI Listing

Publication Analysis

Top Keywords

valence bond
8
enzyme catalysis
8
catalysis
5
bond enzyme
4
catalysis time
4
time break
4
break time
4
time build
4
build understanding
4
understanding enzyme
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!