Advances in healthcare and in the quality of life significantly increase human life expectancy. With the aging of populations, new un-faced challenges are brought to science. The human body is naturally selected to be well-functioning until the age of reproduction to keep the species alive. However, as the lifespan extends, unseen problems due to the body deterioration emerge. There are several age-related diseases with no appropriate treatment; therefore, the complex aging phenomena needs further understanding. It is known that immunosenescence is highly correlated to the negative effects of aging. In this work we advocate the use of simulation as a tool to assist the understanding of immune aging phenomena. In particular, we are comparing system dynamics modelling and simulation (SDMS) and agent-based modelling and simulation (ABMS) for the case of age-related depletion of naive T cells in the organism. We address the following research questions: Which simulation approach is more suitable for this problem? Can these approaches be employed interchangeably? Is there any benefit of using one approach compared to the other? Results show that both simulation outcomes closely fit the observed data and existing mathematical model; and the likely contribution of each of the naive T cell repertoire maintenance method can therefore be estimated. The differences observed in the outcomes of both approaches are due to the probabilistic character of ABMS contrasted to SDMS. However, they do not interfere in the overall expected dynamics of the populations. In this case, therefore, they can be employed interchangeably, with SDMS being simpler to implement and taking less computational resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373923 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118359 | PLOS |
Cell Calcium
January 2025
Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
Membrane contact sites (MCS) are specialized compartments found in all eukaryotic cells that are formed between membranes of different organelles that are in close proximity. MCS have important functions as they are sites of efficient transfer of molecules between neighboring organelles. Two recent articles have used the splitFAST system to mark and follow the dynamics of membrane contact sites and used the method to highlight the importance of MCS between the endoplasmic reticulum (ER) and lipid droplets in metabolic adaptation and MCS between the ER and mitochondria in Ca signal propagation.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
January 2025
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) techniques hold great value in evaluating the heterogeneity and spatial characteristics of hematopoietic cells within tissues. These two techniques are highly complementary, with scRNA-seq offering single-cell resolution and ST retaining spatial information. However, there is an urgent demand for well-organized and user-friendly toolkits capable of handling single-cell and spatial information.
View Article and Find Full Text PDFIntegr Psychol Behav Sci
January 2025
Leading Indicator Systems & Motivation Metrics, One Franklin Street, Suite 2508, Boston, MA, 02110, USA.
The concept of human goals is central to the study of psychology (i.e., motivation, behavior, and well-being), sociology (i.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India.
Electronic coupling between individual redox units in a molecular assembly dictates their charge transfer efficacy. Being a well-defined crystalline structure, the metal-organic framework (MOF) ensures proper positioning of redox-active moieties and provides a unique platform to unveil their charge transfer dynamics and quantification with structural relationships. Here, we demonstrate a novel redox-active MOF with near-infrared through-space intervalence charge transfer by introducing a mixed valence state inside redox-active thiazolothiazole-based ligands (DPTTZ) upon photo- or electrochemical reduction.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, 06120 Halle (Saale), Germany.
The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!