A direct construction of 1,2-trans-β-linked 2-acetamido-2-deoxyglycosides was investigated. The 3,4,6-tri-O-benzyl- and 3,4,6-tri-O-acetyl-protected glycosyl diethyl phosphites and 4,6-O-benzylidene-protected galactosyl diethyl phosphite each reacted with a variety of acceptor alcohols in the presence of a stoichiometric amount of Tf2NH in CH2Cl2 at -78 °C to afford the corresponding β-glycosides in good to high yields with complete stereoselectivity. Some experiments provided strong evidence that the corresponding oxazolinium ions are not responsible for the reaction. We demonstrated that glycosylations with the corresponding glycosyl imidate and thioglycoside also proceeded at a low temperature, indicating the possibility of these donors being attractive alternatives to the phosphite. A plausible reaction mechanism, which features glycosyl triflimide and contact ion pair as reactive intermediates, is proposed on the basis of the results obtained with 2-acetamido-2-deoxymannosyl donors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.5b00138 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch of Russian Academy of Sciences, 3 Koptuga Av, Novosibirsk, Russia, 630090.
Mosses and lichens are often used to assess atmospheric deposition of Pb. The most widely used method for determining this isotope is gamma spectrometric analysis. There is often a need to enhance the sensitivity of the method, which can be achieved by pre-concentrating Pb.
View Article and Find Full Text PDFBiochem Mol Biol Educ
January 2025
Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA.
We created a novel laboratory experience where undergraduate students explore the techniques used to study protein misfolding, unfolding, and aggregation. Despite the importance of protein misfolding and aggregation diseases, protein unfolding is not typically explored in undergraduate biochemistry laboratory classes. Yeast alcohol dehydrogenase (YADH) is used in the undergraduate biochemistry laboratory course at Miami University as the model system to explore protein overexpression and purification, bioinformatics, and enzyme characterization.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands.
Brown adipose tissue (BAT) is a metabolically highly active tissue that dissipates energy stored within its intracellular triglyceride droplets as heat. Others have previously utilized MRI to show that the fat fraction of human supraclavicular BAT (scBAT) decreases upon cold exposure, compared with baseline (i.e.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Faculty of Biology, Technion, Israel Institute of Technology, Haifa, Israel.
Cyanobacterial distributions are shaped by abiotic factors including temperature, light and nutrient availability as well as biotic factors such as grazing and viral infection. In this study, we investigated the abundances of T4-like and T7-like cyanophages and the extent of picocyanobacterial infection in the cold, high-nutrient-low-chlorophyll, sub-Antarctic waters of the southwest Pacific Ocean during austral spring. Synechococcus was the dominant picocyanobacterium, ranging from 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!