Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An ultrathin conductive adhesion promoter using positively charged reduced graphene oxide (rGO-NH3(+)) has been demonstrated for preparing highly stable silver nanowire transparent conductive electrodes (AgNW TCEs). The adhesion promoter rGO-NH3(+), spray coated between the substrate and AgNWs, significantly enhances the chemical and mechanical stabilities of the AgNW TCEs. Besides, the ultrathin thickness of the rGO-NH3(+) ensures excellent optical transparency and mechanical flexibility for TCEs. The AgNW films prepared using the adhesion promoter are extremely stable under harsh conditions, including ultrasonication in a variety of solvents, 3M Scotch tape detachment test, mechanical bending up to 0.3% strain, or fatigue over 1000 cycles. The greatly enhanced adhesion force is attributed to the ionic interactions between the positively charged protonated amine groups in rGO-NH3(+) and the negatively charged hydroxo- and oxo-groups on the AgNWs. The positively charged GO-NH3(+) and commercial polycationic polymer (poly allylamine hydrochloride) are also prepared as adhesion promoters for comparison with rGO-NH3(+). Notably, the closely packed hexagonal atomic structure of rGO offers better barrier properties to water permeation and demonstrates promising utility in durable waterproof electronics. This work offers a simple method to prepare high-quality TCEs and is believed to have great potential application in flexible waterproof electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5nr00777a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!