Combination of IFNα and poly-I:C reprograms bladder cancer microenvironment for enhanced CTL attraction.

J Immunother Cancer

Departments of Sugery, University of Pittsburgh, Pittsburgh, PA 15213 USA ; Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15213 USA ; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213 USA ; University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 USA ; Department of Surgery, University of Pittsburgh, Hillman Cancer Center, UPCI Research Pavilion, Room 1.46b, 5117 Center Avenue, Pittsburgh, PA 15213 USA.

Published: March 2015

Background: BCG is a prototypal cancer immunotherapeutic factor currently approved of bladder cancer. In attempt to further enhance the effectiveness of immunotherapy of bladder cancer and, potentially, other malignancies, we evaluated the impact of BCG on local production of chemokines attracting the desirable effector CD8(+) T cells (CTLs) and undesirable myeloid-derived suppressor cell (MDSCs) and regulatory T(reg) cells, and the ability of bladder cancer tissues to attract CTLs.

Methods: Freshly resected bladder cancer tissues were either analyzed immediately or cultured ex vivo in the absence or presence of the tested factors. The expression of chemokine genes, secretion of chemokines and their local sources in freshly harvested and ex vivo-treated tumor explants were analyzed by quantitative PCR (Taqman), ELISAs and immunofluorescence/confocal microscopy. Migration of CTLs was evaluated ex vivo, using 24-transwell plates. Spearman correlation was used for correlative analysis, while paired Students T test or Wilcoxon was used for statistical analysis of the data.

Results: Bladder cancer tissues spontaneously expressed high levels of the granulocyte/MDSC-attractant CXCL8 and Treg-attractant CCL22, but only marginal levels of the CTL-attracting chemokines: CCL5, CXCL9 and CXCL10. Baseline CXCL10 showed strong correlation with local expression of CTL markers. Unexpectedly, BCG selectively induced only the undesirable chemokines, CCL22 and CXCL8, but had only marginal impact on CXCL10 production. In sharp contrast, the combination of IFNα and a TLR3 ligand, poly-I:C (but not the combinations of BCG with IFNα or BCG with poly-I:C), induced high levels of intra-tumoral production of CXCL10 and promoted CTL attraction. The combination of BCG with IFNα + poly-I:C regimen did not show additional advantage.

Conclusions: The current data indicate that suboptimal ability of BCG to reprogram cancer-associated chemokine environment may be a factor limiting its therapeutic activity. Our observations that the combination of BCG with (or replacement by) IFNα and poly-I:C allows to reprogram bladder cancer tissues for enhanced CTL entry may provide for new methods of improving the effectiveness of immunotherapy of bladder cancer, helping to extend BCG applications to its more advanced forms, and, potentially, other diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4371844PMC
http://dx.doi.org/10.1186/s40425-015-0050-8DOI Listing

Publication Analysis

Top Keywords

bladder cancer
32
cancer tissues
16
cancer
9
bcg
9
combination ifnα
8
ifnα poly-ic
8
bladder
8
enhanced ctl
8
ctl attraction
8
effectiveness immunotherapy
8

Similar Publications

Background: S. haematobium is a recognized carcinogen and is associated with squamous cell carcinoma of the bladder. Its association with high-risk(HR) human papillomavirus (HPV) persistence, cervical pre-cancer and cervical cancer incidence has not been fully explored.

View Article and Find Full Text PDF

Home Urine Dipstick Screening for Bladder and Kidney Cancer in High-Risk Populations in England: A Microsimulation Study of Long-Term Impact and Cost-Effectiveness.

Pharmacoeconomics

January 2025

Sheffield Centre for Health and Related Research (SCHARR), School of Medicine and Population Health, The University of Sheffield, Regent Court, 30 Regent Street, Sheffield, UK.

Background: Testing high-risk populations for non-visible haematuria may enable earlier detection of bladder cancer, potentially decreasing mortality. This research aimed to assess the cost-effectiveness of urine dipstick screening for bladder cancer in high-risk populations in England.

Methods:  A microsimulation model developed in R software was calibrated to national incidence data by age, sex and stage, and validated against mortality data.

View Article and Find Full Text PDF

Understanding the molecular landscape of nonmuscle-invasive bladder cancer (NMIBC) is essential to improve risk assessment and treatment regimens. We performed a comprehensive genomic analysis of patients with NMIBC using whole-exome sequencing (n = 438), shallow whole-genome sequencing (n = 362) and total RNA sequencing (n = 414). A large genomic variation within NMIBC was observed and correlated with different molecular subtypes.

View Article and Find Full Text PDF

Objectives: We explored how to improve communication about low-risk lesions including labels, language and other strategies.

Design: Qualitative description and thematic analysis to examine the transcripts of telephone interviews with patients who had low-risk lesions and physicians; and mapping to Communication Accommodation Theory to interpret themes.

Setting: Canada PARTICIPANTS: 15 patients: 6 (40%) bladder, 5 (33%) prostate and 4 (27%) cervix lesions; and 13 physicians: 7 (54%) cervix, 3 (23%) bladder and 3 (23%) prostate lesions.

View Article and Find Full Text PDF

PD-L1 expression in high-risk non-muscle invasive bladder cancer is not a biomarker of response to BCG.

World J Urol

January 2025

Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Room Be-304, 3015 GD, Rotterdam, The Netherlands.

Purpose: Up to 50% of high-risk non-muscle invasive bladder cancer (HR-NMIBC) patients fail Bacillus Calmette-Guérin (BCG) treatment, resulting in a high risk of progression and poor clinical outcomes. Biomarkers that predict outcomes after BCG are lacking. The antitumor effects of BCG are driven by a cytotoxic T cell response, which may be controlled by immune checkpoint proteins like Programmed Death Ligand 1 (PD-L1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!