The maximum rates of adenosine triphosphatase (ATPase) systems related to energy consumption were systematically evaluated in synaptic plasma membranes isolated from the striata of male Wistar rats aged 2, 6, 12, 18, and 24 months, because of their key role in presynaptic nerve ending homeostasis. The following enzyme activities were evaluated: sodium-potassium-magnesium adenosine triphosphatase (Na(+), K(+), Mg(2+)-ATPase); ouabain-insensitive magnesium adenosine triphosphatase (Mg(2+)-ATPase); sodium-potassium adenosine triphosphatase (Na(+), K(+)-ATPase); direct magnesium adenosine triphosphatase (Mg(2+)-ATPase); calcium-magnesium adenosine triphosphatase (Ca(2+), Mg(2+)-ATPase); and acetylcholinesterase. The results showed that Na(+), K(+)-ATPase decreased at 18 and 24 months, Ca(2+), Mg(2+)-ATPase and acetylcholinesterase decreased from 6 months, while Mg(2+)-ATPase was unmodified. Therefore, ATPases vary independently during aging, suggesting that the ATPase enzyme systems are of neuropathological and pharmacological importance. This could be considered as an experimental model to study regeneration processes, because of the age-dependent modifications of specific synaptic plasma membranes. ATPases cause selective changes in some cerebral functions, especially bioenergetic systems. This could be of physiopathological significance, particularly in many central nervous system diseases, where, during regenerative processes, energy availability is essential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354118 | PMC |
http://dx.doi.org/10.3969/j.issn.1673-5374.2012.01.001 | DOI Listing |
Nat Commun
January 2025
Division of Digestive and Liver Diseases, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
Lynch Syndrome (LS) is a common genetic cancer condition that allows for personalized cancer prevention and early cancer detection in identified gene carriers. We used data from the All of Us (AOU) Research Initiative to assess the prevalence of LS in the general U.S.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL) , Heidelberg, Germany.
How cells establish the interphase genome organization after mitosis is incompletely understood. Using quantitative and super-resolution microscopy, we show that the transition from a Condensin to a Cohesin-based genome organization occurs dynamically over 2 h. While a significant fraction of Condensins remains chromatin-bound until early G1, Cohesin-STAG1 and its boundary factor CTCF are rapidly imported into daughter nuclei in telophase, immediately bind chromosomes as individual complexes, and are sufficient to build the first interphase TAD structures.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Massachusetts Medical School, Worcester, MA, USA.
Background: Neuron-derived extracellular vesicles (NDEVs) are a valuable resource for understanding brain conditions and discovering neurodegenerative diseases biomarkers, notably Alzheimer's disease (AD). Recent interest focuses on capturing neuron-specific EVs from patient-derived samples, characterizing their contents as a pathological reflection of the central nervous system (CNS). Our recent study identified ATPase Na/K Transporting Subunit Alpha 3 (ATP1A3) as a prevalent neuron-specific EV marker specifically expressed in brains.
View Article and Find Full Text PDFCephalalgia
January 2025
Department of Biomedicine, Health Aarhus University, Aarhus, Denmark.
Background: Familial hemiplegic migraine (FHM) types 1-3 are associated with protein-altering genetic variants in , and , respectively. These genes have also been linked to epilepsy. Previous studies primarily focused on phenotypes, examining genetic variants in individuals with characteristic FHM symptoms.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
Following transcript release during intrinsic termination, Escherichia coli RNA polymerase (RNAP) often remains associated with DNA in a post-termination complex (PTC). RNAPs in PTCs are removed from the DNA by the SWI2/SNF2 adenosine triphosphatase (ATPase) RapA. Here we determined PTC structures on negatively supercoiled DNA and with RapA engaged to dislodge the PTC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!