Deciphering the link between salicylic acid signaling and sphingolipid metabolism.

Front Plant Sci

Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México México City, México.

Published: March 2015

The field of plant sphingolipid biology has evolved in recent years. Sphingolipids are abundant in cell membranes, and genetic analyses revealed essential roles for these lipids in plant growth, development, and responses to abiotic and biotic stress. Salicylic acid (SA) is a key signaling molecule that is required for induction of defense-related genes and rapid and localized cell death at the site of pathogen infection (hypersensitive response) during incompatible host-pathogen interactions. Conceivably, while levels of SA rapidly increase upon pathogen infection for defense activation, they must be tightly regulated during plant growth and development in the absence of pathogens. Genetic and biochemical evidence suggest that the sphingolipid intermediates, long-chain sphingoid bases, and ceramides, play a role in regulating SA accumulation in plant cells. However, how signals generated from the perturbation of these key sphingolipid intermediates are transduced into the activation of the SA pathway has long remained to be an interesting open question. At least four types of molecules - MAP kinase 6, reactive oxygen species, free calcium, and nitric oxide - could constitute a mechanistic link between sphingolipid metabolism and SA accumulation and signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353297PMC
http://dx.doi.org/10.3389/fpls.2015.00125DOI Listing

Publication Analysis

Top Keywords

salicylic acid
8
sphingolipid metabolism
8
plant growth
8
growth development
8
pathogen infection
8
sphingolipid intermediates
8
sphingolipid
5
deciphering link
4
link salicylic
4
acid signaling
4

Similar Publications

New potential susceptibility factors contributing to tomato bacterial spot disease.

J Proteomics

January 2025

Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil. Electronic address:

The label-free shotgun proteomics analysis carried out in this study aimed to understand the molecular mechanisms that contribute towards tomato susceptibility to Xanthomonas euvesicatoria pv. perforans (Xep). To achieve this, comparative proteomics was performed on susceptible inoculated plants with the bacterium and the control group (saline solution) at 24 and 48 h after inoculation (hai).

View Article and Find Full Text PDF

Freshwater depletion becomes a significant challenge as the population grows and food demand rises. We evaluated the responses of lettuce cultivars () under saline stress in photosynthetic responses, production, and ion homeostasis. We used a randomized block design in a 3 × 5 factorial scheme with five replications-the first factor: three cultivars of curly lettuce: SVR 2005, Simpson, and Grand Rapids.

View Article and Find Full Text PDF

Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought.

Plants (Basel)

January 2025

Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.

Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development.

View Article and Find Full Text PDF

Analysis of the CHS Gene Family Reveals Its Functional Responses to Hormones, Salinity, and Drought Stress in Moso Bamboo ().

Plants (Basel)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Chalcone synthase (CHS), the first key structural enzyme in the flavonoid biosynthesis pathway, plays a crucial role in regulating plant responses to abiotic stresses and hormone signaling. However, its molecular functions remain largely unknown in , which is one of the most economically and ecologically important bamboo species and the most widely distributed one in China. This study identified 17 genes in and classified them into seven subgroups, showing a closer evolutionary relationship to genes from rice.

View Article and Find Full Text PDF

Natural Enemies Acquire More Prey Aphids from Hormone-Treated Insect-Attracting Plants.

Plants (Basel)

January 2025

Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China.

Exogenous plant hormones regulate the agronomic and physiological performance of plants and thus can influence the abundance of insect groups. We surveyed the arthropods on flowering plants and found that the abundance of natural enemies and in the plots treated with salicylic acid (SA) and indole acetic acid (IAA) was significantly increased compared with those in the clean water (control) plots. Then, we investigated the effects of spraying SA, IAA, and clean water on the population parameters of reared on Our results from the age-stage, two-sex life table analysis revealed a significantly shorter pre-adult duration for aphids reared on SA-treated compared to those reared on the other two treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!