When we expressed a small (0.9 kb) nonprotein-coding transcript derived from the mitochondrial VS plasmid in the nucleus of Neurospora we found that it was efficiently spliced at one or more of eight 5' splice sites and ten 3' splice sites, which are present apparently by chance in the sequence. Further experimental and bioinformatic analyses of other mitochondrial plasmids, random sequences, and natural nuclear genes in Neurospora and other fungi indicate that fungal spliceosomes recognize a wide range of 5' splice site and branchpoint sequences and predict introns to be present at high frequency in random sequence. In contrast, analysis of intronless fungal nuclear genes indicates that branchpoint, 5' splice site and 3' splice site consensus sequences are underrepresented compared with random sequences. This underrepresentation of splicing signals is sufficient to deplete the nuclear genome of splice sites at locations that do not comprise biologically relevant introns. Thus, the splicing machinery can recognize a wide range of splicing signal sequences, but splicing still occurs with great accuracy, not because the splicing machinery distinguishes correct from incorrect introns, but because incorrect introns are substantially depleted from the genome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408805 | PMC |
http://dx.doi.org/10.1261/rna.047985.114 | DOI Listing |
Unlabelled: Biomolecular condensates organize cellular environments and regulate key processes such as transcription. We previously showed that full-length androgen receptor (AR-FL), a major oncogenic driver in prostate cancer (PCa), forms nuclear condensates upon androgen stimulation in androgen-sensitive PCa cells. Disrupting these condensates impairs AR-FL transcriptional activity, highlighting their functional importance.
View Article and Find Full Text PDFWorld J Cardiol
January 2025
Cardiac Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
Background: Myocardial ischemia/reperfusion (I/R) injury, which is associated with high morbidity and mortality, is a main cause of unexpected myocardial injury after acute myocardial infarction. However, the underlying mechanism remains unclear. Circular RNAs (circRNAs), which are formed from protein-coding genes, can sequester microRNAs or proteins, modulate transcription and interfere with splicing.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Life Science, Dezhou University, Dezhou 253023, China.
Thioredoxin z (TRX z) plays a significant role in chloroplast development by regulating the transcription of chloroplast genes. In this study, we identified a pentatricopeptide repeat (PPR) protein, rice albino seedling-lethal (RAS), that interacts with OsTRX z. This interaction was initially discovered by using a yeast two-hybrid (Y2H) screening technique and was further validated through Y2H and bimolecular fluorescence complementation (BiFC) experiments.
View Article and Find Full Text PDFGenes (Basel)
December 2024
The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland.
Background: An estimated 10-15% of all genetic diseases are attributable to variants in noncanonical splice sites, auxiliary splice sites and deep-intronic variants. Most of these unstudied variants are classified as variants of uncertain significance (VUS), which are not clinically actionable. This study investigated two novel splice-altering variants, NM_000390.
View Article and Find Full Text PDFCancer Res
January 2025
Tsinghua University, Beijing, China.
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive and lacks effective therapeutic options. Cancer cells frequently become more dependent on splicing factors than normal cells due to increased rates of transcription. Terminal uridylyltransferase 1 (TUT1) is a specific terminal uridylyltransferase for U6 small nuclear RNA (snRNA), which plays a catalytic role in the spliceosome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!