Objective: To evaluate the usefulness of the metal artifact reduction technique "WARP" in the assessment of metal-on-metal hip resurfacings at 1.5 and 3T in the context of image quality and imaging speed.
Materials And Methods: Nineteen patients (25 hip resurfacings) were randomized for 1.5 and 3T MRI, both including T1 and T2 turbo spin-echo as well as turbo inversion recovery magnitude sequences with and without view angle tilting and high bandwidth. Additional 3T sequences were acquired with a reduced number of averages and using the parallel acquisition technique for accelerating imaging speed. Artifact size (diameter, area), image quality (5-point scale) and delineation of anatomical structures were compared among the techniques, sequences and field strengths using the Wilcoxon sign-rank and paired t-test with Bonferroni correction.
Results: At both field strengths, WARP showed significant superiority over standard sequences regarding image quality, artifact size and delineation of anatomical structures. At 3T, artifacts were larger compared to 1.5T without affecting diagnostic quality, and scanning time could be reduced by up to 64 % without quality degradation.
Conclusion: WARP proved useful in imaging metal-on-metal hip resurfacings at 1.5T as well as 3T with better image quality surrounding the implants. At 3T imaging could be considerably accelerated without losing diagnostic quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00256-015-2128-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!