Microtubules driven by kinesin motors have been utilised as "molecular shuttles" in microfluidic environments with potential applications in autonomous nanoscale manipulations such as capturing, separating, and/or concentrating biomolecules. However, the conventional flow cell-based assay has difficulty in separating bound target molecules from free ones even with buffer flushing because molecular manipulations by molecular shuttles take place on a glass surface and molecular binding occurs stochastically; this makes it difficult to determine whether molecules are carried by molecular shuttles or by diffusion. To address this issue, we developed a microtubule-based transport system between two compartments connected by a single-micrometre-scale channel array that forms dynamically via pneumatic actuation of a polydimethylsiloxane membrane. The device comprises three layers-a control channel layer (top), a microfluidic channel layer (middle), and a channel array layer (bottom)-that enable selective injection of assay solutions into a target compartment and dynamic formation of the microchannel array. The pneumatic channel also serves as a nitrogen supply path to the assay area, which reduces photobleaching of fluorescently labelled microtubules and deactivation of kinesin by oxygen radicals. The channel array suppresses cross-contamination of molecules caused by diffusion or pressure-driven flow between compartments, facilitating unidirectional transport of molecular shuttles from one compartment to another. The method demonstrates, for the first time, efficient and unidirectional microtubule transport by eliminating diffusion of target molecules on a chip and thus may constitute one of the key aspects of motor-driven nanosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5lc00148j | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea.
Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
The integration of spin crossover (SCO) magnetic switching and electric polarization properties can engender intriguing correlated magnetic and electric phenomena. However, achieving substantial SCO-induced polarization change through rational molecular design remains a formidable challenge. Herein, we present a polar Fe(II) compound that exhibits substantial polarization change in response to a thermally regulated low-spin ↔ high-spin transition.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China. Electronic address:
Hyperuricemia-related diabetic wounds are notoriously difficult to treat due to elevated uric acid (UA) levels, excessive reactive oxygen species (ROS), and chronic inflammation. Current therapies often fail to address these underlying causes, underscoring the need for innovative approaches that not only clear UA but also mitigate inflammation and promote tissue regeneration. In this study, we developed a polyrotaxane-based microsphere (HPR MS) system conjugated with 4,5-diamino-2-thiouracil (DT) to achieve high-affinity UA clearance without increasing cytotoxicity.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
CRM1 (XPO1) has been well-characterized as a shuttling receptor that mediates the export of protein and RNA cargos to the cytoplasm, and previous analyses have pinpointed several key residues (A541, F572, K568, S1055, and Q742) that modulate CRM1 export activity. CRM1 also has a less studied nuclear function in RNA biogenesis, which is reflected by its localization to the Cajal body and the nucleolus. Here, we have investigated how the mutation of these key residues affects the intranuclear localization of CRM1 and its ability to mediate export of endogenous cargos.
View Article and Find Full Text PDFDev Cell
January 2025
State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China. Electronic address:
Lactate has emerged as a central metabolic fuel and an important signaling molecule. Its availability participates in various brain functions. Although lactate homeostasis is vital for adult hippocampal neurogenesis and cognition, it is still unknown how shuttles lactate across the plasma membrane of neural stem cells (NSCs) to control their activity and neurogenic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!