Purpose: We sought to measure the medial orbital wall foramina distances in two previously unstudied populations, to describe a new bony medial wall feature, and to validate the accuracy of a new coordinate measurement device within the orbit.
Methods: Dried, well-preserved, complete human skulls without orbital defects were studied. Age, gender, birthplace, ethnicity, and laterality of the orbit were recorded for each skull. Supranumerary ethmoidal foramina were recorded, and the fronto-ethmoidal groove depth was measured. The distances between the anterior lacrimal crest (ALC) - anterior ethmoidal foramen (AEF), AEF - posterior ethmoidal foramen (PEF), and PEF - optic canal (OC) were measured first by surgical ruler and wire and then by the Microscribe coordinate measurement device.
Results: One hundred and forty-six orbits were studied. Fifty-seven orbits were of European or Caucasian descent, 68 orbits of African American descent, 2 orbits of West African descent, 11 orbits of Eskimo descent, and 8 orbits of unknown origin. No significant differences existed between the manual and Microscribe measurements for the ALC-AEF, AEF-PEF, and PEF-OF distances (p < 0.0001). A significant frontoethmoidal groove was observed in 27/146 (19%) orbits, in 6/57 (11%) Caucasian orbits, in 17/70 (24%) African American orbits, and in 4/11 (36%) Eskimo orbits. Supranumerary ethmoidal foramina were found in 50/146 orbits (34.2%) and in 17/27 (63%) orbits with a significant frontoethmoidal grooves.
Conclusions: No significant differences in medial wall foramina distances exist between African American and Caucasian orbits; however, a frontoethmoidal groove occurs more commonly in African American orbits. This groove often occurs in the presence of supernumerary ethmoidal foramina. The Microscribe coordinate measurement system represents a valid tool to measure distances within the orbit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/01676830.2014.997394 | DOI Listing |
Molecules
November 2024
Institute of Physical Chemistry and Chemical Physics STU, Radlinskeho 9, SK-81237 Bratislava, Slovakia.
The distortions and instability of high-symmetry configurations of polyatomic systems in nondegenerate states are usually ascribed to the pseudo-Jahn-Teller effect (PJTE). The geometries of hypericin, isohypericin, and fringelite D were optimized within various symmetry groups. Group-theoretical treatment and (TD-)DFT calculations were used to identify the corresponding electronic states during the symmetry descent.
View Article and Find Full Text PDFArch Craniofac Surg
October 2024
Department of Plastic Reconstructive Surgery, Chosun University College of Medicine, Gwangju, Korea.
In this paper, we investigate the theoretical models and potential applications of spatial diffractive neural network (SDNN) structures, with a particular focus on mode manipulation. Our research introduces a novel diffractive transmission simulation method that employs matrix multiplication, alongside a parameter optimization algorithm based on neural network gradient descent. This approach facilitates a comprehensive understanding of the light field manipulation capabilities inherent to SDNNs.
View Article and Find Full Text PDFJ Am Chem Soc
March 2024
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
Merging molecular bonding concepts with semiconductor- and materials-based concepts of band structure is challenging due to the mutually exclusive historical development and notations used in those respective fields: symmetry adapted linear combinations (SALCs) and Mulliken terms for molecules, versus space and Bloch sums for materials. This lack of commonality brings the issue of hybridization (aka electronic coupling) between molecules and materials to the forefront in many aspects of modern chemical research─including nanocrystal properties, solar energy conversion, and molecular computing. It is thus critical to establish a holistic approach to hybridizing orbital (molecule) and plane-wave (semiconductor/material) systems to better describe symmetry-based molecule|material bonding and the corresponding symmetry-adapted molecular orbital (MO) diagrams.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!