A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated labeling of cancer textures in larynx histopathology slides using quasi-supervised learning. | LitMetric

Objective: To evaluate the performance of a quasi-supervised statistical learning algorithm, operating on datasets having normal and neoplastic tissues, to identify larynx squamous cell carcinomas. Furthermore, cancer texture separability measures against normal tissues are to be developed and compared either for colorectal or larynx tissues.

Study Design: Light microscopic digital images from histopathological sections were obtained from laryngectomy materials including squamous cell carcinoma and nonneoplastic regions. The texture features were calculated by using co-occurrence matrices and local histograms. The texture features were input to the quasi-supervised learning algorithm.

Results: Larynx regions containing squamous cell carcinomas were accurately identified, having false and true positive rates up to 21% and 87%, respectively.

Conclusion: Larynx squamous cell carcinoma versus normal tissue texture separability measures were higher than colorectal adenocarcinoma versus normal textures for the colorectal database. Furthermore, the resultant labeling performances for all larynx datasets are higher than or equal to that of colorectal datasets. The results in larynx datasets, in comparison with the former colorectal study, suggested that quasi-supervised texture classification is to be a helpful method in histopathological image classification and analysis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

squamous cell
16
quasi-supervised learning
8
larynx squamous
8
cell carcinomas
8
texture separability
8
separability measures
8
cell carcinoma
8
texture features
8
versus normal
8
larynx datasets
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!