We report a strategy enabling ultrasensitive colorimetric detection of 17β-estradiol (E2) in water and urine samples using DNA aptamer-coated gold nanoparticles (AuNPs). Starting from an established sensor format where aggregation is triggered when target-bound aptamers dissociate from AuNP surfaces, we demonstrated that step-change improvements are easily accessible through deletion of excess flanking nucleotides from aptamer sequences. After evaluating the lowest energy two-dimensional configuration of the previously isolated E2 binding 75-mer aptamer (KD ∼25 nM), new 35-mer and 22-mer aptamers were generated with KD's of 14 and 11 nM by simply removing flanking nucleotides on either side of the inner core. The shorter aptamers were found to improve discrimination against other steroidal molecules and to improve colorimetric sensitivity for E2 detection by 25-fold compared with the 75-mer to 200 pM. In comparing the response of all sequences, we find that the excess flanking nucleotides suppress signal transduction by causing target-bound aptamers to remain adhered to AuNPs, which we confirm via surface sensitive electrochemical measurements. However, comparison between the 22-mer and 35-mer systems show that retaining a small number of excess bases is optimal. The performance advances we achieved by specifically considering the signal transduction mechanism ultimately resulted in facile detection of E2 in urine, as well as enabling environmental detection of E2 at levels approaching biological relevance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5b00335 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!