There has been re-emerging interest and significant work dedicated to investigating the metabolic effects of high intensity interval training (HIIT) in recent years. HIIT is considered to be a time efficient alternative to classic endurance training (ET) that elicits similar metabolic responses in skeletal muscle. However, there is a lack of information on the impact of HIIT on cardiac muscle in disease. Therefore, we determined the efficacy of ET and HIIT to alter cardiac muscle characteristics involved in the development of diastolic dysfunction, such as ventricular hypertrophy, fibrosis and angiogenesis, in a well-established rodent model of hypertension-induced heart failure before the development of overt heart failure. ET decreased left ventricle fibrosis by ~40% (P < 0.05), and promoted a 20% (P<0.05) increase in the left ventricular capillary/fibre ratio, an increase in endothelial nitric oxide synthase protein (P<0.05), and a decrease in hypoxia inducible factor 1 alpha protein content (P<0.05). In contrast, HIIT did not decrease existing fibrosis, and HIIT animals displayed a 20% increase in left ventricular mass (P<0.05) and a 20% decrease in cross sectional area (P<0.05). HIIT also increased brain natriuretic peptide by 50% (P<0.05), in the absence of concomitant angiogenesis, strongly suggesting pathological cardiac remodeling. The current data support the longstanding belief in the effectiveness of ET in hypertension. However, HIIT promoted a pathological adaptation in the left ventricle in the presence of hypertension, highlighting the need for further research on the widespread effects of HIIT in the presence of disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372563PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121138PLOS

Publication Analysis

Top Keywords

heart failure
12
high intensity
8
intensity interval
8
endurance training
8
cardiac muscle
8
interval endurance
4
training opposing
4
opposing effects
4
effects markers
4
markers heart
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!