Determination of Lung Volume and Hemodynamic Changes During High-Frequency Ventilation Recruitment in Preterm Neonates With Respiratory Distress Syndrome.

Crit Care Med

1Division of Neonatology, Policlinico A. Gemelli-Università Cattolica del Sacro Cuore, Rome, Italy. 2The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia. 3Department of Obstetrics and Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.

Published: August 2015

Objectives: To evaluate the changes in end-expiratory lung volume during an oxygenation-guided stepwise recruitment procedure in elective high-frequency ventilation. We hypothesized that high continuous distending pressure impedes pulmonary blood flow as evidenced by reduced lung volume measurements using respiratory inductive plethysmography. Changes in oxygenation, ventilation, and peripheral perfusion were evaluated as secondary outcomes.

Design: A prospective, single center, observational, nonrandomized study.

Setting: The study was conducted in a neonatal ICU in Italy.

Patients: High-frequency ventilated preterm infants with respiratory distress syndrome.

Interventions: During the recruitment procedure, end-expiratory lung volume measured by respiratory inductive plethysmography, oxygen saturation, perfusion index, regional cerebral and perirenal tissue oxygenation, heart rate, transcutaneous PCO2, and tidal volume were simultaneously recorded at each airway pressure step.

Measurements And Main Results: In 12 preterm newborns (gestational age, 27.4 ± 0.2 wk; birth weight, 979 ± 198 g), high-frequency ventilation was initiated at a continuous distending pressure of 10 cm H2O and incrementally increased by 1-2 cm H2O every 2-5 minutes until FIO2 was less than or equal to 0.25. End-expiratory lung volume progressively increased during the initial recruitment, but decreased at the maximum airway pressure in nine patients, indicative of a reduction in pulmonary perfusion. At the end of recruitment, tidal volume was significantly higher (p = 0.002) and oxygenation was significantly improved (p = 0.002); however, mean perfusion index, postductal saturation, and mean renal tissue oxygenation values were significantly reduced (p < 0.05) compared with baseline. Mean cerebral tissue oxygenation and mean transcutaneous PCO2 values were reduced but failed to reach significance.

Conclusions: High distending lung pressures increased oxygenation but decreased peripheral perfusion with no adverse cerebral side effects. Coupled with the reduction in respiratory inductive plethysmography-derived lung volume, high continuous distending pressure had adverse cardiopulmonary effects. Incorporation of lung volume and hemodynamic and oxygenation variables may guide optimum lung volume determination during high-frequency ventilation recruitment procedure while preventing adverse effects on the pulmonary circulation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CCM.0000000000000967DOI Listing

Publication Analysis

Top Keywords

lung volume
32
high-frequency ventilation
16
end-expiratory lung
12
recruitment procedure
12
continuous distending
12
distending pressure
12
respiratory inductive
12
tissue oxygenation
12
volume
10
volume hemodynamic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!