Minimally invasive characterization of covalent monolayer sheets using tip-enhanced Raman spectroscopy.

ACS Nano

†Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.

Published: April 2015

Synthetic covalent monolayer sheets and their subclass, two-dimensional polymers are of particular interest in materials science because of their special dimensionality which renders them very different from any bulk matter. However, structural analysis of such entities is rather challenging, and there is a clear need for additional analytical methods. The present study shows how tip-enhanced Raman spectroscopy (TERS) can be performed on monomer monolayers and the covalent sheets prepared from them by [4 + 4]-cycloaddition to explore rather complex structural and mechanistic issues. TERS is a surface analytical method that combines the high lateral resolution of scanning probe microscopy (SPM) with a greatly enhanced Raman scattering intensity. The high spatial resolution (<60 nm) and the significantly improved sensitivity (contrast factor of >4000) compared to confocal Raman microscopy provides new insights into the formation of this new and exciting material, namely significant consumption of the reactive units (anthracenes) and exclusion of the alternative [4 + 2]-cycloaddition. Moreover, due to the high lateral resolution, it was possible to find a first spectroscopic hint for step growth as the dominant mechanism in the formation of these novel monolayer sheets. In addition, TERS was used to get first insights into the phase behavior of a comonomer mixture.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b00629DOI Listing

Publication Analysis

Top Keywords

monolayer sheets
12
covalent monolayer
8
tip-enhanced raman
8
raman spectroscopy
8
high lateral
8
lateral resolution
8
minimally invasive
4
invasive characterization
4
characterization covalent
4
sheets
4

Similar Publications

Tripodal Triptycenes as a Versatile Building Block for Highly Ordered Molecular Films and Self-Assembled Monolayers.

Acc Chem Res

January 2025

Laboratory for Chemistry and Life Science (CLS), Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.

ConspectusThe design of properties and functions of molecular assemblies requires not only a proper choice of building blocks but also control over their packing arrangements. A highly versatile unit in this context is a particular type of triptycene with substituents at the 1,8,13-positions, called tripodal triptycene, which offers predictable molecular packing and multiple functionalization sites, both at the opposite 4,5,16- or 10 (bridgehead)-positions. These triptycene building blocks are capable of two-dimensional (2D) nested hexagonal packing, leading to the formation of 2D sheets, which undergo one-dimensional (1D) stacking into well-defined "2D+1D" structures.

View Article and Find Full Text PDF

Aims: Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology.

View Article and Find Full Text PDF

Synthesis of ultra-large diameter graphene oxide flakes from natural flake graphite.

Heliyon

December 2024

College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.

Graphene and its derivatives are widely used in various fields due to their unique two-dimensional lamellar structure. This study aims to synthesize ultra-large graphene oxide (GO) sheets from natural flake graphite and investigate the factors influencing their size. Using a two-intercalation method based on the modified Hummers' method, we address the challenge of intercalating large-diameter graphene oxide by employing a secondary intercalation technique.

View Article and Find Full Text PDF

Anti-Fatigue Cellular Graphene Aerogel Through Multiscale Joint Strengthening.

Adv Mater

December 2024

Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China.

Despite fatigue free of monolayer graphene, its assemblies, like cellular graphene aerogels (CGA), are usually suffering of frequent fatigue and inherent strength degradation in repeated loading. In this work, by employing multiscale modeling, the highly intrinsic anisotropic mechanical properties of the cell wall due to the layer-by-layer stacked graphene sheets are uncovered, which easily trigger the unique skeleton joints damage during repeated loading and contribute the primary fatigue mechanism of CGA. Conversely, multiscale joint strengthening strategies are proposed by interlayer crosslinking and joint curvation, improving the interlayer interaction, and decreasing interlayer stress during compression, respectively, so as to effectively suppress joint damage to improve fatigue performance of CGA.

View Article and Find Full Text PDF

Enhanced removal of Ni and Co from wastewater using a novel 2-hydroxyphosphonoacetic acid modified Mg/Fe-LDH composite adsorbent.

Water Res

December 2024

Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China. Electronic address:

While technological advancements in treating electroplating wastewater continue, removing high concentrations of Ni and Co remains a challenge. Surface functionalization of clay has emerged as a pivotal approach for effectively removing heavy metals, rivaling intercalation modification in its effectiveness. This study investigated the adsorption performance and mechanisms of a phosphonate-modified layered double hydroxide material, employing batch experiments and simulation calculations to elucidate the impact of surface modification on adsorption behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!