Technology and Plastic Surgery: Potential Pitfalls for Patient Confidentiality and Proposed Solutions.

Plast Reconstr Surg

Department of Surgery, Division of Plastic Surgery, Albany Medical Center, Albany, N.Y. Department of Plastic Surgery, Loma Linda University, Loma Linda, Calif. Department of Surgery, Division of Plastic and Reconstructive Surgery, Mount Sinai Hospital, New York, N.Y. Department of Surgery, Division of Plastic, Maxillofacial, and Oral Surgery, Duke University, Durham, N.C. Department of Plastic Surgery, Loma Linda University, Loma Linda, Calif.

Published: July 2015

Download full-text PDF

Source
http://dx.doi.org/10.1097/PRS.0000000000001379DOI Listing

Publication Analysis

Top Keywords

technology plastic
4
plastic surgery
4
surgery potential
4
potential pitfalls
4
pitfalls patient
4
patient confidentiality
4
confidentiality proposed
4
proposed solutions
4
technology
1
surgery
1

Similar Publications

Amputees but not healthy subjects optimally integrate non-spatially matched visuo-tactile stimuli.

iScience

January 2025

Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland.

Our brain combines sensory inputs to create a univocal perception, enhanced when stimuli originate from the same location. Following amputation, distorted body representations may disrupt visuo-tactile integration at the amputated leg. We aim to unveil the principles guiding optimal and cognitive-efficient visuo-tactile integration at both intact and amputated legs.

View Article and Find Full Text PDF

Intramolecular charge transfer assisted multi-resonance thermally activated delayed fluorescence emitters for high-performance solution-processed narrowband OLEDs.

Chem Sci

January 2025

Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China

Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters have been actively employed in high-resolution solution-processed organic light emitting diodes (OLEDs) due to their excellent color purity. Nonetheless, they are always confronted with intrinsic slow spin flip of triplet excitons, impeding the electroluminescence properties, especially in non-sensitized OLEDs. Herein, we constructed intramolecular charge transfer (ICT) assisted MR-TADF emitters by grafting donor-acceptor-type moieties with a - or -substitution as a pendant on an organoboron multi-resonance core.

View Article and Find Full Text PDF

Development of Chitosan-Polyacrylic Acid Complex Systems for Enhanced Oral Delivery of and Probiotics.

Drug Des Devel Ther

January 2025

Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, ‎Applied ‎Science Private University, Amman, 11937, Jordan.

Introduction: The beneficial effects of probiotics are encountered by their low viability in gastrointestinal conditions and their insufficient stability during manufacturing, throughut the gastrointestinal transit, and storage. Therefore, novel systems are highly required to improve probiotics delivery.

Methods: In this study, Lactobacillus gasseri (L), Bifidobacterium bifidum (B), and a combination of L+B were encapsulated in chitosan (CS)-polyacrylic acid (PAA) complex systems (CS-PAA).

View Article and Find Full Text PDF

The tensile behaviour of paper under high loading rates.

Cellulose (Lond)

December 2024

Vehicle Safety Institute, Graz University of Technology, Inffeldgasse 13/6, 8010 Graz, Austria.

This work deals with the strain-rate dependent characterization of paper under uniaxial tension at high strain-rates. Experiments were performed involving a Split Hopkinson bar for high strain-rate testing, comparing the results with conventional quasi-static tests. Tests were conducted in a strain-rate range between 0.

View Article and Find Full Text PDF

Molecular Cocrystal Strategy for Retinamorphic Vision with UV-Vis-NIR Perception and Fast Recognition.

ACS Nano

January 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China.

Neuromorphic vision sensors capable of multispectral perception and efficient recognition are highly desirable for bioretina emulation, but their realization is challenging. Here, we present a cocrystal strategy for preparing an organic nanowire retinamorphic vision sensor with UV-vis-NIR perception and fast recognition. By leveraging molecular-scale donor-acceptor interpenetration and charge-transfer interfaces, the cocrystal nanowire device exhibits ultrawide photoperception ranging from 350 to 1050 nm, fast photoresponse of 150 ms, high specific detectivity of 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!