Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organic-inorganic perovskite solar cells have recently emerged at the forefront of photovoltaics research. Here, for the first time, graphdiyne (GD), a novel two dimension carbon material, is doped into PCBM layer of perovskite solar cell with an inverted structure (ITO/PEDOT:PSS/CH3NH3PbI(3-x)Cl(x)/PCBM:GD/C60/Al) to improve the electron transport. The optimized PCE of 14.8% was achieved. Also, an average power conversion efficiency (PCE) of PCBM:GD-based devices was observed with 28.7% enhancement (13.9% vs 10.8%) compared to that of pure PCBM-based ones. According to scanning electron microscopy, conductive atomic force microscopy, space charge limited current, and photoluminescence quenching measurements, the enhanced current density and fill factor of PCBM:GD-based devices were ascribed to the better coverage on the perovskite layer, improved electrical conductivity, strong electron mobility, and efficient charge extraction. Small hysteresis and stable power output under working condition (14.4%) have also been demonstrated for PCBM:GD based devices. The enhanced device performances indicated the improvement of film conductivity and interfacial coverage based on GD doping which brought the high PCE of the devices and the data repeatability. In this work, GD demonstrates its great potential for applications in photovoltaic field owing to its networks with delocalized π-systems and unique conductivity advantage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.5b00787 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!