Limited tryptic digestion of Escherichia coli transcription termination factor rho [an RNA-dependent nucleoside triphosphatase (NTPase)] yields predominantly two fragments (f1 and f2) when the protein is bound to both poly(C) and ATP. The apparent molecular masses of the two fragments are 31 kDa for f1 and 15 kDa for f2, adding up to the molecular mass of the intact rho polypeptide chain (46 kDa). Sequence analysis of the amino termini demonstrates that f1 is derived from the amino-terminal portion of rho and that the trypsin cleavage that defines f2 occurs at lysine-283. These results suggest that, in the liganded (activated) form, the native rho protein monomer is organized into two distinct structural domains that are separable by a single proteolytic cleavage. The f1 fragment, purified from NaDodSO4/polyacrylamide gels and renatured, binds poly(C) but the f2 fragment does not; neither regains any ATPase activity. ATP- and polynucleotide-dependent changes in the rate of proteolysis and in the character of the fragments produced suggest that rho undergoes a series of conformational transitions as a consequence of RNA binding, NTP binding and NTP hydrolysis. The rate of loss of rho ATPase activity and of intact rho monomers is slower in the presence of adenosine 5'-[gamma-thio]triphosphate than in the presence of either ATP or ADP, indicating that the hydrolysis of ATP may result in different conformational effects than does the binding of this ligand. These findings are discussed within the context of recent models of rho-dependent transcription termination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC397443 | PMC |
http://dx.doi.org/10.1073/pnas.82.7.1911 | DOI Listing |
PLoS Biol
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
The organization of the human genome in space and time is critical for transcriptional regulation and cell fate determination. However, robust methods for tracking genome organization or genomic interactions over time in living cells are lacking. Here, we developed a multicolor DNA labeling system, ParSite, to simultaneously track triple genomic loci in the U2OS cells.
View Article and Find Full Text PDFSci Adv
January 2025
Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
The stability of RNA polymerase II (Pol II) is tightly regulated during transcriptional elongation for proper control of gene expression. Our recent studies revealed that promoter-proximal Pol II is destabilized via the ubiquitin E3 ligase cullin 3 (CUL3) upon loss of transcription elongation factor SPT5. Here, we investigate how CUL3 recognizes chromatin-bound Pol II as a substrate.
View Article and Find Full Text PDFCancer Res
January 2025
Tsinghua University, Beijing, China.
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive and lacks effective therapeutic options. Cancer cells frequently become more dependent on splicing factors than normal cells due to increased rates of transcription. Terminal uridylyltransferase 1 (TUT1) is a specific terminal uridylyltransferase for U6 small nuclear RNA (snRNA), which plays a catalytic role in the spliceosome.
View Article and Find Full Text PDFDiabetes
January 2025
Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
PPARγ is the pharmacological target of thiazolidinediones (TZDs), potent insulin sensitizers that prevent metabolic disease morbidity but are accompanied by side effects such as weight gain, in part due to non-physiological transcriptional agonism. Using high throughput genome engineering, we targeted nonsense mutations to every exon of PPARG, finding an ATG in Exon 2 (chr3:12381414, CCDS2609 c.A403) that functions as an alternative translational start site.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
Unlabelled: is a ubiquitous environmental pathogen. Despite its remarkable adaptability, little is known about the mechanisms of stress resistance in this bacterium. Here, in a screen for iron-susceptible transposon mutants, we identified a cytochrome that protects against multiple stresses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!