While many HLA class I molecules interact directly with the peptide loading complex (PLC) for conventional loading of peptides certain class I molecules are able to present peptides in a way that circumvents the PLC components. We investigated micropolymorphisms at position 156 of HLA-A(*)24 allotypes and their effects on PLC dependence for assembly and peptide binding specificities. HLA-A(*)24:06(156Trp) and HLA-A(*)24:13(156Leu) showed high levels of cell surface expression while HLA-A(*)24:02(156Gln) was expressed at low levels in tapasin deficient cells. Peptides presented by these allelic variants showed distinct differences in features and repertoire. Immunoprecipitation experiments demonstrated all the HLA-A(*)24/156 variants to associate at similar levels with tapasin when present. Structurally, HLA-A(*)24:02 contains the residue triad Met97/His114/Gln156 and a Trp156 or Leu156 polymorphism provides tapasin independence by stabilizing these triad residues, thus generating an energetically stable and a more peptide receptive environment. Micropolymorphisms at position 156 can influence the generic peptide loading pathway for HLA-A(*)24 by altering their tapasin dependence for peptide selection. The trade-off for this tapasin independence could be the presentation of unusual ligands by these alleles, imposing significant risk following hematopoietic stem cell transplantation (HSCT).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353853PMC
http://dx.doi.org/10.1155/2014/298145DOI Listing

Publication Analysis

Top Keywords

levels tapasin
12
tapasin independence
12
residue triad
8
hla-a*24 allotypes
8
class molecules
8
peptide loading
8
micropolymorphisms position
8
position 156
8
tapasin
6
peptide
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!