Various recent studies revealed that biometal dyshomeostasis plays a crucial role in the pathogenesis of neurological disorders such as autism spectrum disorders (ASD). Substantial evidence indicates that disrupted neuronal homeostasis of different metal ions such as Fe, Cu, Pb, Hg, Se, and Zn may mediate synaptic dysfunction and impair synapse formation and maturation. Here, we performed in vitro studies investigating the consequences of an imbalance of transition metals on glutamatergic synapses of hippocampal neurons. We analyzed whether an imbalance of any one metal ion alters cell health and synapse numbers. Moreover, we evaluated whether a biometal profile characteristic for ASD patients influences synapse formation, maturation, and composition regarding NMDA receptor subunits and Shank proteins. Our results show that an ASD like biometal profile leads to a reduction of NMDAR (NR/Grin/GluN) subunit 1 and 2a, as well as Shank gene expression along with a reduction of synapse density. Additionally, synaptic protein levels of GluN2a and Shanks are reduced. Although Zn supplementation is able to rescue the aforementioned alterations, Zn deficiency is not solely responsible as causative factor. Thus, we conclude that balancing Zn levels in ASD might be a prime target to normalize synaptic alterations caused by biometal dyshomeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352758 | PMC |
http://dx.doi.org/10.1155/2015/985083 | DOI Listing |
Int J Mol Sci
December 2024
Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
Mutations in the SLC25A38 gene are responsible for the second most common form of congenital sideroblastic anemia (CSA), a severe condition for which no effective treatment exists. We developed and characterized a K562 erythroleukemia cell line with markedly reduced expression of the SLC25A38 protein (A38-low cells). This model successfully recapitulated the main features of CSA, including reduced heme content and mitochondrial respiration, increase in mitochondrial iron, ROS levels and sensitivity to oxidative stress.
View Article and Find Full Text PDFRedox Biochem Chem
December 2024
Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany.
While copper (Cu) is an essential trace element for biological systems due to its redox properties, excess levels may lead to adverse effects partly due to overproduction of reactive species. Thus, a tightly regulated Cu homeostasis is crucial for health. Cu dyshomeostasis and elevated labile Cu levels are associated with oxidative stress and neurodegenerative disorders, but the underlying mechanisms have yet to be fully characterized.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
The term frontotemporal dementia (FTD) comprises a group of neurodegenerative disorders characterized by the progressive degeneration of the frontal and temporal lobes of the brain with language impairment and changes in cognitive, behavioral and executive functions, and in some cases motor manifestations. A high proportion of FTD cases are due to genetic mutations and inherited in an autosomal-dominant manner with variable penetrance depending on the implicated gene. Iron is a crucial microelement that is involved in several cellular essential functions in the whole body and plays additional specialized roles in the central nervous system (CNS) mainly through its redox-cycling properties.
View Article and Find Full Text PDFFree Radic Biol Med
November 2024
Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, Shandong Province, China; Pet Nutrition Research and Development Center Gambol Pet Group Co.,Ltd, Liaocheng, 252000, Shandong Province, China. Electronic address:
Mounting evidence suggests that eicosapentaenoic acid (EPA) is superior to docosahexaenoic acid (DHA) in the treatment of depression, but the underlying mechanisms remain elusive. In the present study, the effect of DHA and EPA on depressive-like behaviors was investigated in chronic sleep-deprived (CSD) mice. Following the administration of EPA or DHA, investigations were conducted on depression-like behavior, myelin damage, iron dyshomeostasis, oligodendrocyte-lipids peroxidation, and neuroinflammation.
View Article and Find Full Text PDFJ Trace Elem Med Biol
December 2024
Cell Biology Lab, Biological and Agronomic Sciences Department, Federal University of Santa Catarina, Curitibanos, SC, Brazil. Electronic address:
Introduction: Copper dyshomeostasis can be related to an increase in copper levels, resulting in toxicity, or to a decrease in tissues levels, impairing cuproenzyme activities. Inside cells, copper can be found in the cytoplasm and inside organelles, and the main organelle that compartmentalizes copper is the mitochondrion. This organelle can form networks and may fuse or fission from this, determining the mitochondrial fusion and fission processes, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!