The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352751 | PMC |
http://dx.doi.org/10.1155/2015/212719 | DOI Listing |
Sci Rep
January 2025
Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China.
With the emergence of numerous classifications, surgical treatment for adolescent idiopathic scoliosis (AIS) can be guided more effectively. However, surgical decision-making and optimal strategies still lack standardization and personalized customization. Our study aims to devise proper deep learning (DL) models that incorporate key factors influencing surgical outcomes on the coronal plane in AIS patients to facilitate surgical decision-making and predict surgical results for AIS patients.
View Article and Find Full Text PDFSci Rep
January 2025
Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
To retrospectively develop and validate an interpretable deep learning model and nomogram utilizing endoscopic ultrasound (EUS) images to predict pancreatic neuroendocrine tumors (PNETs). Following confirmation via pathological examination, a retrospective analysis was performed on a cohort of 266 patients, comprising 115 individuals diagnosed with PNETs and 151 with pancreatic cancer. These patients were randomly assigned to the training or test group in a 7:3 ratio.
View Article and Find Full Text PDFAcad Radiol
January 2025
Department of Radiology, Xinhua Hospital, Shanghai Jiaotong University Medical School, Shanghai 200092, China (Z.H.W., Y.Q.M., X.Y.W., N.X.Y., X.Y.W., G.R.). Electronic address:
Rationale And Objectives: The expression of human epidermal growth factor receptor 2 (HER2) in gastric cancer is closely associated with its treatment outcomes and prognosis. This study aims to develop and validate a HER2 prediction model based on computed tomography (CT). Additionally, the study evaluates the robustness of the proposed model.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
South African Medical Research Council/University of Johannesburg Pan African Centre for Epidemics Research Extramural Unit, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.
Background: HIV testing is the cornerstone of HIV prevention and a pivotal step in realizing the Joint United Nations Program on HIV/AIDS (UNAIDS) goal of ending AIDS by 2030. Despite the availability of relevant survey data, there exists a research gap in using machine learning (ML) to analyze and predict HIV testing among adults in South Africa. Further investigation is needed to bridge this knowledge gap and inform evidence-based interventions to improve HIV testing.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China. Electronic address:
The anti-inflammatory role of miR-23b-3p (miR-23b) is known in autoimmune diseases like multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. However, its role in sepsis-related acute lung injury (ALI) and its effect on macrophages in ALI remain unexplored. This investigation aimed to evaluate miR-23b's therapeutic potential in macrophages in the context of ALI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!