Cuprizone-induced demyelination and demyelination-associated inflammation result in different proton magnetic resonance metabolite spectra.

NMR Biomed

Experimental Cell Transplantation Group, Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium; Bio-Imaging Laboratory, University of Antwerp, Antwerp, Belgium.

Published: April 2015

Conventional MRI is frequently used during the diagnosis of multiple sclerosis but provides only little additional pathological information. Proton MRS ((1) H-MRS), however, provides biochemical information on the lesion pathology by visualization of a spectrum of metabolites. In this study we aimed to better understand the changes in metabolite concentrations following demyelination of the white matter. Therefore, we used the cuprizone model, a well-established mouse model to mimic type III human multiple sclerosis demyelinating lesions. First, we identified CX3 CL1/CX3 CR1 signaling as a major regulator of microglial activity in the cuprizone mouse model. Compared with control groups (heterozygous CX3 CR1(+/-) C57BL/6 mice and wild type CX3 CR1(+/+) C57BL/6 mice), microgliosis, astrogliosis, oligodendrocyte cell death and demyelination were shown to be highly reduced or absent in CX3 CR1(-/-) C57BL/6 mice. Second, we show that (1) H-MRS metabolite spectra are different when comparing cuprizone-treated CX3 CR1(-/-) mice showing mild demyelination with cuprizone-treated CX3 CR1(+/+) mice showing severe demyelination and demyelination-associated inflammation. Following cuprizone treatment, CX3 CR1(+/+) mice show a decrease in the Glu, tCho and tNAA concentrations as well as an increased Tau concentration. In contrast, following cuprizone treatment CX3 CR1(-/-) mice only showed a decrease in tCho and tNAA concentrations. Therefore, (1) H-MRS might possibly allow us to discriminate demyelination from demyelination-associated inflammation via changes in Tau and Glu concentration. In addition, the observed decrease in tCho concentration in cuprizone-induced demyelinating lesions should be further explored as a possible diagnostic tool for the early identification of human MS type III lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403969PMC
http://dx.doi.org/10.1002/nbm.3277DOI Listing

Publication Analysis

Top Keywords

demyelination demyelination-associated
12
demyelination-associated inflammation
12
c57bl/6 mice
12
cx3 cr1+/+
12
cx3 cr1-/-
12
metabolite spectra
8
multiple sclerosis
8
mouse model
8
type iii
8
demyelinating lesions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!