We study the vibrational relaxation dynamics and the reorientation dynamics of HDO molecules in binary water-dimethyl sulfoxide (DMSO) and water-acetone mixtures with polarization-resolved femtosecond mid-infrared spectroscopy. For low solute concentrations we observe a slowing down of the reorientation of part of the water molecules that hydrate the hydrophobic methyl groups of DMSO and acetone. For water-DMSO mixtures the fraction of slowed-down water molecules rises much steeper with solute concentration than for water-acetone mixtures, showing that acetone molecules show significant aggregation already at low concentrations. At high solute concentrations, the vibrational and reorientation dynamics of both water-DMSO and water-acetone mixtures show a clear distinction between the dynamics of water molecules donating hydrogen bonds to other water molecules and the dynamics of water donating a hydrogen bond to the S═O/C═O group of the solute. For water-DMSO mixtures both types of water molecules show a very slow reorientation. The water molecules forming hydrogen bonds to the S═O group reorient with a time constant that decreases from 46 ± 14 ps at XDMSO = 0.33 to 13 ± 2 ps at XDMSO = 0.95. The water molecules forming hydrogen bonds to the C═O group of acetone show a much faster reorientation with a time constant that decreases from 6.1 ± 0.2 ps at Xacet = 0.3 to 2.96 ± 0.05 ps at Xacet = 0.9. The large difference in reorientation time constant of the solute-bound water for DMSO and acetone can be explained from the fact that the hydrogen bond between water and the S═O group of DMSO is much stronger than the hydrogen bond between water and the C═O group of acetone. We attribute the strongly different behavior of water in DMSO-rich and acetone-rich mixtures to their difference in molecular shape.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp512703w | DOI Listing |
Soft Matter
January 2025
Department of Physics, Central University of Karnataka, Kadaganchi, Kalaburagi, Karnataka-585367, India.
The isomerization kinetics of a liquid crystalline azobenzene dimer, comprising cyanoazobenzene and naphthalene (NAZ6), were investigated at the air-water interface. The Langmuir monolayers of NAZ6 in both its and states were analyzed using surface manometry techniques. The results revealed that NAZ6 molecules in the -state displayed the coexistence of a disordered liquid-expanded phase and an ordered liquid-condensed phase, whereas no such phase transition was observed in the -state.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
The Effective Fragment Potential (EFP) method, a polarizable quantum mechanics-based force field for describing non-covalent interactions, is utilized to calculate protein-ligand interactions in seven inactive cyclin-dependent kinase 2-ligand complexes, employing structural data from molecular dynamics simulations to assess dynamic and solvent effects. Our results reveal high correlations between experimental binding affinities and EFP interaction energies across all the structural data considered. Using representative structures found by clustering analysis and excluding water molecules yields the highest correlation (R2 of 0.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Nature and Environment, Faculty of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan.
In this work, we study the plexciton in the far-ultraviolet region formed between indium nanoclusters and water molecules. The indium clusters are fabricated on graphene under ultrahigh vacuum conditions and show a strong localized surface plasmon polariton (LSP) absorption band at 6-7 eV. Adsorption of water molecules onto the clusters at 115 K induces a band splitting larger than 1 eV, indicating a strong coupling between the LSP and water 4a ← 1b transition.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
DO and HO, as two important solvents with very similar properties, play a pivotal role in nuclear industrial production, life and scientific research. Unfortunately, DO and HO are highly susceptible to contamination by each other, so effective qualitative and quantitative analyses of both are necessary. This review comprehensively discusses the progress in optical sensing for the detection of a trace amount of HO in heavy water or , mainly including five types of analytical systems: inorganic nanocrystals, carbon-based nanomaterials, lanthanide complexes, organic polymers, and organic small molecules.
View Article and Find Full Text PDFUnlabelled: Proton exchange is a fundamental chemical event, and NMR provides the most direct readout of protonation events with site-specific resolution. Conventional approaches require manual titration of sample pH to collect a series of NMR spectra at different pH values. This requires extensive sample handling and often results in significant sample loss, leading to reduced signal or the need to prepare additional samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!