There is considerable interest in NMDAR modulators to enhance memory and treat neuropsychiatric disorders such as addiction, depression, and schizophrenia. D-serine and D-cycloserine, the NMDAR activators at the glycine site, are of particular interest because they have been used in humans without serious adverse effects. Interestingly, D-serine also inhibits some NMDARs active at hyperpolarized potentials (HA-NMDARs), and we previously found that HA-NMDARs within the nucleus accumbens core (NAcore) are critical for promoting compulsion-like alcohol drinking, where rats consume alcohol despite pairing with an aversive stimulus such as quinine, a paradigm considered to model compulsive aspects of human alcohol use disorders (AUDs). Here, we examined the impact of D-serine and D-cycloserine on this aversion-resistant alcohol intake (that persists despite adulteration with quinine) and consumption of quinine-free alcohol. Systemic D-serine reduced aversion-resistant alcohol drinking, without altering consumption of quinine-free alcohol or saccharin with or without quinine. Importantly, D-serine within the NAcore but not the dorsolateral striatum also selectively reduced aversion-resistant alcohol drinking. In addition, D-serine inhibited EPSCs evoked at -70 mV in vitro by optogenetic stimulation of mPFC-NAcore terminals in alcohol-drinking rats, similar to reported effects of the NMDAR blocker AP5. Further, D-serine preexposure occluded AP5 inhibition of mPFC-evoked EPSCs, suggesting that D-serine reduced EPSCs by inhibiting HA-NMDARs. Systemic D-cycloserine also selectively reduced intake of quinine-adulterated alcohol, and D-cycloserine inhibited NAcore HA-NMDARs in vitro. Our results indicate that HA-NMDAR modulators can reduce aversion-resistant alcohol drinking, and support testing of D-serine and D-cycloserine as immediately accessible, FDA-approved drugs to treat AUDs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538350 | PMC |
http://dx.doi.org/10.1038/npp.2015.84 | DOI Listing |
Biol Psychiatry
January 2025
New York State Psychiatric Institute, New York, New York; College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York. Electronic address:
Cognitive impairment associated with schizophrenia (CIAS) and related deficits in learning (plasticity) are among the leading causes of disability in schizophrenia. Despite this, there are no Food and Drug Administration-approved treatments for CIAS, and the development of treatments has been limited by numerous phase 2/3 failures of compounds that showed initial promise in small-scale studies. NMDA-type glutamate receptors (NMDARs) have been proposed to play an important role in schizophrenia; moreover, the NMDAR has a well-characterized role in cognition, learning, and neuroplasticity.
View Article and Find Full Text PDFTransl Psychiatry
January 2024
Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany.
The partial N-methyl-D-aspartate receptor (NMDAR) agonist D-Cycloserine (DCS) has been evaluated for the treatment of a wide variety of psychiatric disorders, including dementia, schizophrenia, depression and for the augmentation of exposure-based psychotherapy. Most if not all of the potential psychiatric applications of DCS target an enhancement or restitution of cognitive functions, learning and memory. Their molecular correlate is long-term synaptic plasticity; and many forms of synaptic plasticity depend on the activation of NMDA receptors.
View Article and Find Full Text PDFMol Psychiatry
January 2024
Hadassah BrainLabs, Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel.
Modern research data suggest a therapeutic role for serotonergic psychedelics in depression and other neuropsychiatric disorders, although psychotomimetic effects may limit their widespread utilization. Serotonergic psychedelics enhance neuroplasticity via serotonin 2 A receptors (5HT2AR) activation and complex serotonergic-glutamatergic interactions involving the ionotropic glutamate receptors, tropomyosin receptor kinase B (TrkB) and the mammalian target of rapamycin (mTOR). N-methyl-d-aspartate receptors (NMDAR) channel antagonists, i.
View Article and Find Full Text PDFAdv Exp Med Biol
August 2023
University of Thessaly, Department of Neurology, Laboratory of Neurogenetics, Larissa, Greece.
Biomolecules
June 2022
Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy.
Schizophrenia has been conceptualized as a neurodevelopmental disorder with synaptic alterations and aberrant cortical-subcortical connections. Antipsychotics are the mainstay of schizophrenia treatment and nearly all share the common feature of dopamine D2 receptor occupancy, whereas glutamatergic abnormalities are not targeted by the presently available therapies. D-amino acids, acting as N-methyl-D-aspartate receptor (NMDAR) modulators, have emerged in the last few years as a potential augmentation strategy in those cases of schizophrenia that do not respond well to antipsychotics, a condition defined as treatment-resistant schizophrenia (TRS), affecting almost 30-40% of patients, and characterized by serious cognitive deficits and functional impairment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!