Cotranslational stabilization of Sec62/63 within the ER Sec61 translocon is controlled by distinct substrate-driven translocation events.

Mol Cell

Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA; Cystic Fibrosis Foundation Therapeutics, Inc., Bethesda, MD 20814, USA.

Published: April 2015

The ER Sec61 translocon is a large macromolecular machine responsible for partitioning secretory and membrane polypeptides into the lumen, cytosol, and lipid bilayer. Because the Sec61 protein-conducting channel has been isolated in multiple membrane-derived complexes, we determined how the nascent polypeptide modulates translocon component associations during defined cotranslational translocation events. The model substrate preprolactin (pPL) was isolated principally with Sec61αβγ upon membrane targeting, whereas higher-order complexes containing OST, TRAP, and TRAM were stabilized following substrate translocation. Blocking pPL translocation by passenger domain folding favored stabilization of an alternate complex that contained Sec61, Sec62, and Sec63. Moreover, Sec62/63 stabilization within the translocon occurred for native endogenous substrates, such as the prion protein, and correlated with a delay in translocation initiation. These data show that cotranslational translocon contacts are ultimately controlled by the engaged nascent chain and the resultant substrate-driven translocation events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402133PMC
http://dx.doi.org/10.1016/j.molcel.2015.02.018DOI Listing

Publication Analysis

Top Keywords

translocation events
12
sec61 translocon
8
substrate-driven translocation
8
translocon
5
translocation
5
cotranslational stabilization
4
stabilization sec62/63
4
sec61
4
sec62/63 sec61
4
translocon controlled
4

Similar Publications

Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

The Hsp100 family of protein disaggregases play important roles in maintaining protein homeostasis in cells. E. coli ClpB is an Hsp100 protein that solubilizes protein aggregates.

View Article and Find Full Text PDF

Changes in RNA Splicing: A New Paradigm of Transcriptional Responses to Probiotic Action in the Mammalian Brain.

Microorganisms

January 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.

Elucidating the gene regulatory mechanisms underlying the gut-brain axis is critical for uncovering novel gut-brain interaction pathways and developing therapeutic strategies for gut bacteria-associated neurological disorders. Most studies have primarily investigated how gut bacteria modulate host epigenetics and gene expression; their impact on host alternative splicing, particularly in the brain, remains largely unexplored. Here, we investigated the effects of the gut-associated probiotic Lacidofil on alternative splicing across 10 regions of the rat brain using published RNA-sequencing data.

View Article and Find Full Text PDF

Upon exposure to inflammatory stimuli including TNF-α, endothelial cells are activated leading to the adhesion of monocytes to their surface. These events are involved in the pathophysiology of atherosclerosis. Since TNF-α activates the NF-κB pathway, which contributes to atherosclerosis, targeting this signaling pathway may help prevent the risk of developing the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!