Photoexcitation dynamics of the E((1)Σ(+)) (v' = 0) Rydberg state and the V((1)Σ(+)) (v') ion-pair vibrational states of HBr are investigated by velocity map imaging (VMI). H(+) photoions, produced through a number of vibrational and rotational levels of the two states were imaged and kinetic energy release (KER) and angular distributions were extracted from the data. In agreement with previous work, we found the photodissociation channels forming H*(n = 2) + Br((2)P3/2)/Br*((2)P1/2) to be dominant. Autoionization pathways leading to H(+) + Br((2)P3/2)/Br*((2)P1/2) via either HBr(+)((2)Π3/2) or HBr(+)*((2)Π1/2) formation were also present. The analysis of KER and angular distributions and comparison with rotationally and mass resolved resonance enhanced multiphoton ionization (REMPI) spectra revealed the excitation transition mechanisms and characteristics of states involved as well as the involvement of the E-V state interactions and their v' and J' dependence.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp00748hDOI Listing

Publication Analysis

Top Keywords

velocity map
8
map imaging
8
e-v state
8
ker angular
8
angular distributions
8
rydberg valence
4
state
4
valence state
4
state excitation
4
excitation dynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!