Receptor-interacting protein 3 (RIP3) is a key molecular switch in tumor necrosis factor-induced necroptosis requiring the formation of an RIP3-RIP1 complex. We have recently shown that hippocampal cornu ammonis 1 (CA1) neuronal death induced by 20-min global cerebral ischemia/reperfusion (I/R) injury is a form of programmed necrosis. However, the mechanism behind this process is still unclear and was studied here. Global cerebral ischemia was induced by the four-vessel occlusion method and Necrostatin-1 (Nec-1), a specific inhibitor of necroptosis, was administered by intracerebroventricular injection 1h before ischemia. Normally, in the hippocampal CA1 neurons, RIP1 and RIP3 are located in the cytoplasm. However, after I/R injury, RIP3 was upregulated and translocated to the nucleus while RIP1 was not affected. Nec-1 pretreatment prevented hippocampal CA1 neuronal death and I/R induced changes in RIP3. Decreased level of NAD+ in hippocampus and the release of cathepsin-B from lysosomes after I/R injury were also inhibited by Nec-1. Our data demonstrate that Nec-1 inhibits neuronal death by preventing RIP3 upregulation and nuclear translocation, as well as NAD+ depletion and cathepsin-B release. The nuclear translocation of RIP3 has not been reported previously, so this may be an important role for RIP3 during ischemic injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2015.03.024 | DOI Listing |
J Am Soc Nephrol
January 2025
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
Background: Cardiac surgery-associated acute kidney injury is a common serious complication after cardiac surgery. Currently, there are no specific pharmacological therapies. Our understanding of its pathophysiology remains preliminary.
View Article and Find Full Text PDFHeliyon
January 2025
Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
Background: () is one of the most common pathogens associated with deep fungal infection, which represents a serious threat to human health. Although high mobility group box 1 (HMGB1) plays a key role in infection, its mechanism is unclear. We aimed to explore the regulation of small-molecule non-coding RNA (miRNA) for HMGB1 in infection.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
January 2025
Neural Development Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.
The nuclear pore complex, a large multimeric structure consists of numerous protein components, serves as a crucial gatekeeper for the transport of macromolecules across the nuclear envelope in eukaryotic cells. Dysfunction of the NPC has been implicated in various neurodegenerative diseases, including Alzheimer's disease. In AD, Tau aggregates interact with NPC proteins, known as nucleoporins, leading to disruptions in nuclear transport.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
January 2025
Department of Medical Oncology (Lab), Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India. Electronic address:
Lamins, which are crucial type V intermediate filament proteins found in the nuclear lamina, are essential for maintaining the stability and function of the nucleus in higher vertebrates. They are classified into A- and B-types, and their distinct expression patterns contribute to cellular survival, development, and functionality. Lamins emerged during the transition from open to closed mitosis, with their complexity increasing alongside organism evolution.
View Article and Find Full Text PDFOsteoarthritis Cartilage
January 2025
Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China. Electronic address:
Objective: Macrophages play a crucial role in various physiological processes. In intervertebral disc degeneration (IDD), macrophage infiltration has been observed in human intervertebral disc (IVD) specimens, but how macrophages influence IDD remains unclear.
Methods: According to the single-cell transcriptome expression profiles from GSE165722, we verified the infiltration of macrophages in IDD and the possible interaction between infiltrated macrophages and nucleus pulposus cells (NPCs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!