Three isolates viz. Lysinibacillus sp. HT13, Alcaligenes sp. HT15 and Proteus sp. HT37 isolated from fish processing effluent and having a C/N ratio of 2, removed 218, 169, and 400 µg cell(-1) day(-1) NH4(+)-N, respectively without subsequent build up of nitrite or nitrate. Ability of the selected isolates in removing NH4(+)-N, NO2(-)-N, and NO3(-)-N was checked in the presence of four commonly reported and tested effluent carbon sources viz. pyruvate, glycerol, methanol, and acetate. Further, when supplemented to fish processing wastewater containing 234 ppm total Kjeldahl's nitrogen, Lysinibacillus sp. HT13, Alcaligenes sp. HT15, and Proteus sp. HT37 could remediate 95.74, 86.17, and 76.6% nitrogen, respectively in 48 h. This is the first report of a Lysinibacillus sp. carrying out aerobically the process of simultaneous nitrification and denitrification. The results demonstrate the potential of the isolates for use in treatment of fish processing effluents and demonstrating the efficient removal of ammonia.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jobm.201400783DOI Listing

Publication Analysis

Top Keywords

fish processing
16
simultaneous nitrification
8
nitrification denitrification
8
processing effluent
8
lysinibacillus ht13
8
ht13 alcaligenes
8
alcaligenes ht15
8
ht15 proteus
8
proteus ht37
8
denitrification novel
4

Similar Publications

Ribosome profiling and single-cell RNA sequencing identify the unfolded protein response as a key regulator of pigeon lactation.

Zool Res

January 2025

National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.

Pigeons and certain other avian species produce a milk-like secretion in their crop sacs to nourish offspring, yet the detailed processes involved are not fully elucidated. This study investigated the crop sacs of 225-day-old unpaired non-lactating male pigeons (MN) and males initiating lactation on the first day after incubation (ML). Using RNA sequencing, ribosome profiling, and single-cell transcriptome sequencing (scRNA-seq), we identified a significant up-regulation of genes associated with ribosome assembly and protein synthesis in ML compared to MN.

View Article and Find Full Text PDF

Monocyte-Derived cxcl12 Guides a Directional Migration of Blood Vessels in Zebra Fish.

Arterioscler Thromb Vasc Biol

January 2025

School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China.

Background: Sprouting blood vessels, reaching the aimed location, and establishing the proper connections are vital for building vascular networks. Such biological processes are subject to precise molecular regulation. So far, the mechanistic insights into understanding how blood vessels grow to the correct position are limited.

View Article and Find Full Text PDF

Lutropin/choriogonadotropin receptor (LH/CGR) is a member of the G protein-coupled receptor superfamily. LH/CGRs in fish and mammalian species have been reported to contain naturally occurring, constitutively activating, and inactivating mutations in highly conserved regions. The present study was designed to determine the functional aspect of eel LH/CGR signal transduction.

View Article and Find Full Text PDF

Advances in Research on Marine Natural Products for Modulating the Inflammatory Microenvironment.

Phytother Res

January 2025

International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.

In recent years, marine natural products (MNPs) have emerged as crucial sources of lead compounds for the advancement of anti-inflammatory drugs due to their abundant diversity, complexity, and distinctiveness. Inflammatory microenvironments (IMEs) are pervasive pathological features in the etiology of various chronic diseases, referring to the localized milieu or ecosystem where inflammatory responses occur, and they play a pivotal role in the onset and progression of inflammatory diseases. Uncontrolled IMEs can lead to dysregulation of inflammatory mediators within signaling pathways, thereby exerting detrimental effects on human health and even contributing to the development of inflammatory diseases such as cancer.

View Article and Find Full Text PDF

Chromosome-level genome assembly and annotation of Japanese anchovy (Engraulis japonicus).

Sci Data

January 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China.

The Japanese anchovy (Engraulis japonicus), a finfish with the largest biomass of a single species in the Yellow and East China Seas, plays an important pivotal role in converting zooplanktons into high trophic fish in the food web. As a result, the fish is regard as a key species in its habiting ecosystem. However, the lack of genomic resources hampers our understanding of its genetic diversity and differentiation, as well as the evolutionary dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!