A new stereochemical probe for mechanisms at the silicon atom that is based on a deuterium-labeled silolane is synthesized and evaluated. The key synthetic step involves the hydrogenation of a 2,5-dihydrosilole with deuterium gas, giving a complex mixture of isochronic stereoisotopologues. The overall stereochemical imbalance of this mixture is evident in its (2) H NMR spectrum, which provides a good qualitative measure of changes in the configuration at the silicon atom. The technique is rapid, easy to use, and overcomes limitations and biases of traditional methods. The utility of this new procedure is demonstrated by tracking the stereochemical course of several classical reactions as well as contemporary catalytic transformations involving bond formation at the silicon atom.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201500750 | DOI Listing |
Phys Chem Chem Phys
January 2025
College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, Henan, People's Republic of China.
Silicon germanium alloy materials have promising potential applications in the optoelectronic and photovoltaic industries due to their good electronic properties. However, due to the inherent brittleness of semiconductor materials, they are prone to rupturing under harsh working environments, such as high stress or high temperature. Here, we conducted a systematic search for silicon germanium alloy structures using a random sampling strategy, in combination with group theory and graph theory (RG), and 12 stable SiGe structures in 2-8 stacking orders were predicted.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
The ubiquitous nature of thermal fluctuations poses a limitation on the identification of crystal structures. However, the trajectory of an atom carries a fingerprint of its surroundings. This rationalizes the search for a method that can determine the local atomic configuration via the analysis of the movement of an individual atom.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
In traditional atom transfer radical polymerization (ATRP), oxygen must be meticulously eliminated due to its propensity to quench radical species and halt the polymerization process. Additionally, oxygen oxidizes the lower-valent Cu catalyst, compromising its ability to activate alkyl halides and propagate polymerization. In this study, we present an oxygen-driven ATRP utilizing alkylborane compounds, a method that not only circumvents the need for stringent oxygen removal but also exploits oxygen as an essential cofactor to promote polymerization.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an 710021, China.
This study introduces a novel water-insoluble dispersant for coal water slurry (CWS), namely, a poly(sodium styrene sulfonate)- SiO nanoparticle (SiO--PSSNa). SiO--PSSNa was synthesized by combining the surface acylation reaction with surface-initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometer (EDS), nuclear magnetic resonance spectroscopy (NMR) and thermogravimetric analysis (TGA) verified that SiO--PSSNa with the desired structure was successfully obtained.
View Article and Find Full Text PDFJ Inorg Biochem
December 2024
Rutgers, The State University of New Jersey, Dept of Pharmacology, Physiology & Neuroscience, Newark, NJ, United States of America.
Crown ethers have been shown to have physiological effects ascribed to their ionophoric properties. However, high levels of toxicity precluded interest in their evaluation as therapeutic agents. We prepared new silacrown analogs of crown ethers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!