Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Iron oxide nanoparticles (IO NPs) exhibit remarkable properties, including inherent magnetism, biocompatibility, high surface to volume ratio, and versatility of engineering, making them ideal candidates for a variety of clinical applications.
Areas Covered: The review provides an in-depth discussion on recent patents and developments related to IO NPs in Biomedicine from the last 7 years. It covers innovations in the chemical synthesis, surface coating and functionalization, and biomedical applications, including MRI and multimodal imaging, molecular imaging, cell labeling, drug delivery, hyperthermia, hyperphosphatemia, and antibacterial activity. A brief outline of the important properties of IO NPs is also presented.
Expert Opinion: The main focus of current research is the development of new approaches to generate high-quality IO NPs with optimal properties in terms of particle geometry, crystal structure, surface functionalities, stability, and magnetization. Among chemical synthesis methods, thermal decomposition and hydrothermal synthetics processes allow fine control of the particle properties. Plenty of coating materials have been successfully used as shells for these NPs to provide colloidal stability, even enabling the formulation of nanotheranostics for simultaneous disease diagnosis and therapy. However, long-term toxicity and pharmacokinetic studies are necessary before magnetic nanosystems can be approved for clinical use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/13543776.2015.1028358 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!