Comparative genomics of a Helicobacter pylori isolate from a Chinese Yunnan Naxi ethnic aborigine suggests high genetic divergence and phage insertion.

PLoS One

State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China.

Published: February 2016

Helicobacter pylori is a common pathogen correlated with several severe digestive diseases. It has been reported that isolates associated with different geographic areas, different diseases and different individuals might have variable genomic features. Here, we describe draft genomic sequences of H. pylori strains YN4-84 and YN1-91 isolated from patients with gastritis from the Naxi and Han populations of Yunnan, China, respectively. The draft sequences were compared to 45 other publically available genomes, and a total of 1059 core genes were identified. Genes involved in restriction modification systems, type four secretion system three (TFS3) and type four secretion system four (TFS4), were identified as highly divergent. Both YN4-84 and YN1-91 harbor intact cag pathogenicity island (cagPAI) and have EPIYA-A/B/D type at the carboxyl terminal of cagA. The vacA gene type is s1m2i1. Another major finding was a 32.5-kb prophage integrated in the YN4-84 genome. The prophage shares most of its genes (30/33) with Helicobacter pylori prophage KHP30. Moreover, a 1,886 bp transposable sequence (IS605) was found in the prophage. Our results imply that the Naxi ethnic minority isolate YN4-84 and Han isolate YN1-91 belong to the hspEAsia subgroup and have diverse genome structure. The genome has been extensively modified in several regions involved in horizontal DNA transfer. The important roles played by phages in the ecology and microevolution of H. pylori were further emphasized. The current data will provide valuable information regarding the H. pylori genome based on historic human migrations and population structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370579PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120659PLOS

Publication Analysis

Top Keywords

helicobacter pylori
12
naxi ethnic
8
yn4-84 yn1-91
8
type secretion
8
secretion system
8
pylori
6
comparative genomics
4
genomics helicobacter
4
pylori isolate
4
isolate chinese
4

Similar Publications

Background: As seen globally, there are up to sixfold differences in gastric cancer mortality by ethnicity in Aotearoa New Zealand, and H. pylori is the major modifiable risk factor. This study investigates whether current H.

View Article and Find Full Text PDF

Serological tests for needs local validation as the diagnostic accuracy may vary depending on the prevalence of . . This study examined the diagnostic performance of two ELISA, GastroPanel (GastroPanel ELISA; Biohit Oyj) and GENEDIA (GENEDIA .

View Article and Find Full Text PDF

Gastric cancer is the fifth most common cancer and the fifth leading cause of cancer deaths worldwide. Chronic infection by the bacterium Helicobacter pylori is the most prominent gastric cancer risk factor, but only 1-3% of infected individuals will develop gastric cancer. Cigarette smoking is another independent gastric cancer risk factor, and H.

View Article and Find Full Text PDF

Safety and effectiveness of dual therapy for Helicobacter pylori infection and the effect on the glycated hemoglobin level in type 2 diabetes.

Sci Rep

January 2025

Department of Gastroenterology, Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, 68 Gehu Middle Road, Wujing District, Changzhou, 213000, Jiangsu, China.

Patients with diabetes have a high risk of failure of H. pylori eradication therapy. The present study aims to evaluate the efficacy and safety of vonoprazan-amoxicillin (VA) dual therapy for the treatment of H.

View Article and Find Full Text PDF

Beyond the Hayflick Limit: How Microbes Influence Cellular Aging.

Ageing Res Rev

January 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, The Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, The Islamic Republic of Iran. Electronic address:

Cellular senescence, a complex biological process resulting in permanent cell-cycle arrest, is central to aging and age-related diseases. A key concept in understanding cellular senescence is the Hayflick Limit, which refers to the limited capacity of normal human cells to divide, after which they become senescent. Senescent cells (SC) accumulate with age, releasing pro-inflammatory and tissue-remodeling factors collectively known as the senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!