Jumping acoustic bubbles on lipid bilayers.

Soft Matter

Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon 69622, Villeurbanne cedex, France.

Published: May 2015

In the context of sonoporation, we use supported lipid bilayers as a model for biological membranes and investigate the interactions between the bilayer and microbubbles induced by ultrasound. Among the various types of damage caused by bubbles on the surface, our experiments exhibit a singular dynamic interaction process where bubbles are jumping on the bilayer, forming a necklace pattern of alteration on the membrane. This phenomenon was explored with different time and space resolutions and, based on our observations, we propose a model for a microbubble subjected to the combined action of van der Waals, acoustic and hydrodynamic forces. Describing the repeated jumps of the bubble, this model explains the lipid exchanges between the bubble and bilayer.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5sm00427fDOI Listing

Publication Analysis

Top Keywords

lipid bilayers
8
jumping acoustic
4
acoustic bubbles
4
bubbles lipid
4
bilayers context
4
context sonoporation
4
sonoporation supported
4
supported lipid
4
bilayers model
4
model biological
4

Similar Publications

The small GTPase MRAS is a broken switch.

Nat Commun

January 2025

Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada.

Intense research on founding members of the RAS superfamily has defined our understanding of these critical signalling proteins, leading to the premise that small GTPases function as molecular switches dependent on differential nucleotide loading. The closest homologs of H/K/NRAS are the three-member RRAS family, and interest in the MRAS GTPase as a regulator of MAPK activity has recently intensified. We show here that MRAS does not function as a classical switch and is unable to exchange GDP-to-GTP in solution or when tethered to a lipid bilayer.

View Article and Find Full Text PDF

Validation of a Coarse-Grained Martini 3 Model for Molecular Oxygen.

J Chem Theory Comput

January 2025

IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.

Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.

View Article and Find Full Text PDF

We present two innovative approaches to investigate the dynamics of membrane fusion and the strength of protein-membrane interactions. The first approach employs pore-spanning membranes (PSMs), which allow for the observation of protein-assisted fusion processes. The second approach utilizes colloidal probe microscopy with membrane-coated probes with reconstituted proteins.

View Article and Find Full Text PDF

Vacuole fusion is driven by SNARE proteins that require activation-or priming-by the AAA+ protein Sec18 (NSF) before they can bring membranes together and trigger the merger of two bilayers into a continuous membrane. Sec18 resides on vacuoles prior to engaging inactive cis-SNARE complexes through its interaction with the regulatory lipid phosphatidic acid (PA). Binding PA causes Sec18 to undergo large conformational changes that keeps it bound to the membrane, thus precluding its interactions with SNAREs.

View Article and Find Full Text PDF

Molecular Dynamics Simulation for Membrane Fusion.

Methods Mol Biol

January 2025

Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.

The soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein complex drives membrane fusion, and this process is further aided by accessory proteins, including complexin and α-synuclein. To understand the molecular mechanism underlying membrane fusion, we introduce an all-atom molecular dynamics (MD) simulation method. This method is used to understand and predict the conformations of protein and lipids, membrane geometry, and their interaction at femtosecond precision, by describing complex chemical systems with atomic models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!