The effects of secretion factors from umbilical cord derived mesenchymal stem cells on osteogenic differentiation of mesenchymal stem cells.

PLoS One

Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.

Published: December 2015

Factors synthesized by mesenchymal stem cells (MSCs) contain various growth factors, cytokines, exosomes and microRNAs, which may affect the differentiation abilities of MSCs. In the present study, we investigated the effects of secretion factors of human umbilical cord derived mesenchymal stem cells (hUCMSCs) on osteogenesis of human bone marrow derived MSCs (hBMSCs). The results showed that 20 μg/ml hUCMSCs secretion factors could initiate osteogenic differentiation of hBMSCs without osteogenic induction medium (OIM), and the amount of calcium deposit (stained by Alizarin Red) was significantly increased after the hUCMSCs secretion factors treatment. Real time quantitative reverse transcription-polymerase chain reaction (real time qRT-PCR) demonstrated that the expression of osteogenesis-related genes including ALP, BMP2, OCN, Osterix, Col1α and Runx2 were significantly up-regulated following hUCMSCs secretion factors treatment. In addition, we found that 10 μg hUCMSCs secretion factors together with 2×10(5) hBMSCs in the HA/TCP scaffolds promoted ectopic bone formation in nude mice. Local application of 10 μg hUCMSCs secretion factors with 50 μl 2% hyaluronic acid hydrogel and 1×10(5) rat bone marrow derived MSCs (rBMSCs) also significantly enhanced the bone repair of rat calvarial bone critical defect model at both 4 weeks and 8 weeks. Moreover, the group that received the hUCMSCs secretion factors treatment had more cartilage and bone regeneration in the defect areas than those in the control group. Taken together, these findings suggested that hUCMSCs secretion factors can initiate osteogenesis of bone marrow MSCs and promote bone repair. Our study indicates that hUCMSCs secretion factors may be potential sources for promoting bone regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370627PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120593PLOS

Publication Analysis

Top Keywords

secretion factors
40
hucmscs secretion
32
mesenchymal stem
16
stem cells
16
factors
12
bone marrow
12
factors treatment
12
secretion
9
hucmscs
9
bone
9

Similar Publications

Interferon γ-induced protein 10 kDa (IP-10) or C-X-C motif chemokine 10 (CXCL10) is produced and secreted from specific leukocytes such as neutrophils, eosinophils, and monocytes, which play key roles in the immune response to Plasmodium infections. This systematic review aimed to collate and critically appraise the current evidence on IP-10 levels in malaria patients. It provided insights into its role in malaria pathogenesis and potential as a biomarker for Plasmodium infections and disease severity.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.

View Article and Find Full Text PDF

The Auxin Response Factors (ARFs) family of transcription factors are the central mediators of auxin-triggered transcriptional regulation. Functionally different classes of extant ARFs operate as antagonistic auxin-dependent and -independent regulators. While part of the evolutionary trajectory to the present auxin response functions has been reconstructed, it is unclear how ARFs emerged, and how early diversification led to functionally different proteins.

View Article and Find Full Text PDF

Triglyceride to high density lipoprotein cholesterol ratio and major adverse cardiovascular events in ACS patients undergoing PCI.

Sci Rep

December 2024

State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.

The triglyceride to high density lipoprotein cholesterol (TG/HDL-C) ratio has been consistently linked with the risk of coronary heart disease (CHD). Nevertheless, there is a paucity of studies focusing on acute coronary syndrome (ACS) patients undergoing percutaneous coronary intervention (PCI) or experiencing bleeding events. The study encompassed 17,643 ACS participants who underwent PCI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!