Mass drug administration for trachoma: how long is not long enough?

PLoS Negl Trop Dis

Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America; Global Ophthalmology Emory, Emory Eye Center, Emory University School of Medicine, Atlanta, Georgia, United States of America.

Published: March 2015

Background: Blinding trachoma is targeted for elimination by 2020 using the SAFE strategy (Surgery, Antibiotics, Facial cleanliness, and Environmental improvements). Annual mass drug administration (MDA) with azithromycin is a cornerstone of this strategy. If baseline prevalence of clinical signs of trachomatous inflammation - follicular among 1-9 year-olds (TF1-9) is ≥ 10% but <30%, the World Health Organization guidelines are for at least 3 annual MDAs; if ≥ 30%, 5. We assessed the likelihood of achieving the global elimination target of TF1-9 <5% at 3 and 5 year evaluations using program reports.

Methodology/principal Findings: We used the International Trachoma Initiative's prevalence and treatment database. Of 283 cross-sectional survey pairs with baseline and follow-up data, MDA was conducted in 170 districts. Linear and logistic regression modeling was applied to these to investigate the effect of MDA on baseline prevalence. Reduction to <5% was less likely, though not impossible, at higher baseline TF1-9 prevalences. Increased number of annual MDAs, as well as no skipped MDAs, were significant predictors of reduced TF1-9 at follow-up. The probability of achieving the <5% target was <50% for areas with ≥ 30% TF1-9 prevalence at baseline, even with 7 or more continuous annual MDAs.

Conclusions: Number of annual MDAs alone appears insufficient to predict program progress; more information on the effects of baseline prevalence, coverage, and underlying environmental and hygienic conditions is needed. Programs should not skip MDAs, and at prevalences >30%, 7 or more annual MDAs may be required to achieve the target. There are five years left before the 2020 deadline to eliminate blinding trachoma. Low endemic settings are poised to succeed in their elimination goals. However, newly-identified high prevalence districts warrant immediate inclusion in the global program. Intensified application of the SAFE strategy is needed in order to guarantee blinding trachoma elimination by 2020.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370651PMC
http://dx.doi.org/10.1371/journal.pntd.0003610DOI Listing

Publication Analysis

Top Keywords

mass drug
8
drug administration
8
administration trachoma
4
trachoma long
4
long long
4
long enough?
4
enough? background
4
background blinding
4
blinding trachoma
4
trachoma targeted
4

Similar Publications

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

Neglected tropical diseases (NTDs) represent a group of chronic and debilitating infections that affect more than one billion people, predominantly in low-income communities with limited health infrastructure. This paper analyzes the factors that perpetuate the burden of NTDs, highlighting how poor health infrastructure, unfavorable socioeconomic conditions and lack of therapeutic resources exacerbate their impact. The effectiveness of current interventions, such as mass drug administration (MDA) programs and improved sanitation, in reducing disease prevalence is examined.

View Article and Find Full Text PDF

Multiple Myeloma (MM) is a hematologic malignancy caused by clonally expanded plasma cells that produce a monoclonal immunoglobulin (M-protein), a personalized biomarker. Recently, we developed an ultra-sensitive mass spectrometry method to quantify minimal residual disease (MS-MRD) by targeting unique M-protein peptides. Therapeutic antibodies (t-Abs), key in MM treatment, often lead to deep and long-lasting responses.

View Article and Find Full Text PDF

Revisiting the Metabolism of Donepezil in Rats Using Non-Targeted Metabolomics and Molecular Networking.

Pharmaceutics

January 2025

BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.

: Although donepezil, a reversible acetylcholinesterase inhibitor, has been in use since 1996, its metabolic characteristics remain poorly characterized. Therefore, this study aims to investigate the in vivo metabolism of donepezil using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) based on a molecular networking (MN) approach integrated with a non-targeted metabolomics approach. : After the oral administration of donepezil (30 mg/kg) in rats, urine, feces, and liver samples were collected for LC-HRMS analysis.

View Article and Find Full Text PDF

Production of Hydrophobic Microparticles at Safe-To-Inject Sizes for Intravascular Administration.

Pharmaceutics

January 2025

Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands.

Hydrophobic microparticles are one of the most versatile structures in drug delivery and tissue engineering. These constructs offer a protective environment for hydrophobic or water-sensitive compounds (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!