Glaucoma is an age-related neurodegenerative disease of retinal ganglion cells, and appropriate turnover of the extracellular matrix in the trabecular meshwork is important in its pathology. Here, we report the effects of Rho-associated kinase (ROCK) and p38 MAP kinase on transforming growth factor (TGF)-β2-induced type I collagen production in human trabecular meshwork cells. TGF-β2 increased RhoA activity, actin polymerization, and myosin light chain 2 phosphorylation. These effects were significantly inhibited by Y-27632, but not SB203580. TGF-β2 also increased promoter activity, mRNA synthesis, and protein expression of COL1A2. These effects were significantly inhibited by SB203580, but not Y-27632. Additionally, Y-27632 did not significantly inhibit TGF-β2-induced promoter activation, or phosphorylation or nuclear translocation of Smad2/3, whereas SB203580 partially suppressed these processes. Collectively, TGF-β2-induced production of type 1 collagen is suppressed by p38 inhibition and accompanied by partial inactivation of Smad2/3, in human trabecular meshwork cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370581 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120774 | PLOS |
J Mol Histol
December 2024
Department of Ophthalmology, First Affilliated Hospital, Heilongjiang University of Chinese Medicine, No.26 Heping Road, Xiangfang District, Harbin, 150000, China.
Chronic oxidative stress (COS) is related to the pathophysiology of the trabecular meshwork (TM) in glaucoma. MicroRNAs (miRNAs) have a key role in the oxidative stress-mediated glaucoma. This work investigated the function of miR-126-5p in human trabecular meshwork cells (TMCs) under chronic oxidative stress (COS).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2024
Department of Software and Information Systems Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Purpose: Extracellular vesicles (EVs) secreted by non-pigmented ciliary epithelial (NPCE) cells under oxidative stress may contribute to primary open-angle glaucoma (POAG) pathogenesis by altering gene expression in human trabecular meshwork (HTM) cells. This study investigated the impact of microRNAs (miRNAs) carried by NPCE-derived EVs on HTM cell gene expression under oxidative stress conditions.
Methods: NPCE cells were exposed to oxidative stress, and EVs were isolated from control and stressed cells.
Exp Eye Res
December 2024
Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
Intraocular pressure (IOP) is regulated through the balance of production and drainage of aqueous humor. The main route of aqueous-humor outflow comprises the trabecular meshwork (TM) and Schlemm's canal (SC). We reported that IL-6 trans-signaling can inhibit TGF-β signaling in TM cells and may affect regulation of IOP.
View Article and Find Full Text PDFCurr Opin Ophthalmol
December 2024
Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore.
Purpose Of Review: This review discusses the evidence on the efficacy, safety and role of minimally invasive glaucoma surgery (MIGS) in eyes with angle closure glaucoma. While cataract surgery remains the most established surgical treatment for primary angle closure glaucoma (PACG), the intraocular pressure (IOP) may remain elevated after cataract surgery despite open angles due to trabecular meshwork damage from chronic iridotrabecular contact.
Recent Findings: There is emerging evidence that combining cataract surgery with MIGS in eyes with PACG, though an off-label indication for some MIGS devices, can achieve greater IOP and glaucoma medication reduction than cataract surgery alone.
Invest Ophthalmol Vis Sci
December 2024
Department of Ophthalmology, Duke University, Durham, North Carolina, United States.
Intraocular pressure (IOP) elevation is the primary risk factor and currently the main treatable factor for progression of glaucomatous optic neuropathy. In addition to direct clinical and living animal in vivo studies, ex vivo perfusion of anterior segments and whole eyes is a key technique for studying conventional outflow function as it is responsible for IOP regulation. We present well-tested experimental details, protocols, considerations, advantages, and limitations of several ex vivo model systems for studying IOP regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!