Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The copper-sensing operon repressor (CsoR) is an all-α-helical disc-shaped D2-symmetric homotetramer that forms a 2:1 tetramer/DNA operator complex and represses the expression of copper-resistance genes in a number of bacteria. A previous bioinformatics analysis of CsoR-family repressors distributes Cu(I)-sensing CsoRs in four of seven distinct clades on the basis of global sequence similarity. In this work, we define energetically important determinants of DNA binding in the apo-state (ΔΔGbind), and for allosteric negative coupling of Cu(I) binding to DNA binding (ΔΔGc) in a model clade IV CsoR from Geobacillus thermodenitrificans (Gt) of known structure, by selectively targeting for mutagenesis those charged residues uniquely conserved in clade IV CsoRs. These include a folded N-terminal "tail" and a number of Cu(I)-sensor and clade-specific residues that when mapped onto a model of Cu(I)-bound Gt CsoR define a path across one face of the tetramer. We find that Cu(I)-binding prevents formation of the 2:1 "sandwich" complex rather than DNA binding altogether. Folding of the N-terminal tail (residues R18, E22, R74) upon Cu-binding to the periphery of the tetramer inhibits assembly of the 2:1 apoprotein-DNA complex. In contrast, Ala substitution of residues that surround the central "hole" (R65, K101) in the tetramer, as well R48, impact DNA binding. We also identify a quaternary structural ion-pair, E73-K101″, that crosses the tetramer interface, charge-reversal of which restores DNA binding activity, allosteric regulation by Cu(I), and transcriptional derepression by Cu(I) in cells. These findings suggest an "electrostatic occlusion" model, in which basic residues important for DNA binding and/or allostery become sequestered via ion-pairing specifically in the Cu(I)-bound state, and this aids in copper-dependent disassembly of a repression complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.5b00154 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!