Improved assessment of orbital stability of rhythmic motion with noise.

PLoS One

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.

Published: February 2016

Mathematical techniques have provided tools to quantify the stability of rhythmic movements of humans and machines as well as mathematical models. One archetypal example is the use of Floquet multipliers: assuming periodic motion to be a limit-cycle of a nonlinear oscillator, local stability has been assessed by evaluating the rate of convergence to the limit-cycle. However, the accuracy of the assessment in experiments is questionable: Floquet multipliers provide a measure of orbital stability for deterministic systems, but various components of biological systems and machines involve inevitable noise. In this study, we show that the conventional estimate of orbital stability, which depends on regression, has bias in the presence of noise. We quantify the bias, and devise a new method to estimate orbital stability more accurately. Compared with previous methods, our method substantially reduces the bias, providing acceptable estimates of orbital stability with an order-of-magnitude fewer cycles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370583PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119596PLOS

Publication Analysis

Top Keywords

orbital stability
20
stability rhythmic
8
floquet multipliers
8
estimate orbital
8
stability
7
orbital
5
improved assessment
4
assessment orbital
4
rhythmic motion
4
motion noise
4

Similar Publications

This research presents an intelligent beam-hopping-based grant-free random access (GFRA) architecture designed for secure Internet of Things (IoT) communications in Low Earth Orbit (LEO) satellite networks. In light of the difficulties associated with facilitating extensive device connectivity while ensuring low latency and high reliability, we present a beam-hopping GFRA (BH-GFRA) scheme that enhances access efficiency and reduces resource collisions. Three distinct resource-hopping schemes, random hopping, group hopping, and orthogonal group hopping, are examined and utilized within the framework.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) with highly ordered structures and predictable optoelectronic properties provide an ideal platform to investigate the electrochemiluminescence (ECL) performance based on organic materials by atomically varying the molecular construction. Herein, the effect of imine-bond orientation on the ECL performance of COFs is investigated. We report two COFs (NC-COF and CN-COF) with different orientations of imine bonds using pyrene donor units (D) and bipyridine acceptor motifs (A) monomers.

View Article and Find Full Text PDF

Prediction of Thermodynamic Properties of C-Based Fullerenols Using Machine Learning.

J Chem Theory Comput

January 2025

Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.

Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.

View Article and Find Full Text PDF

Untangling the role of single-atom substitution on the improvement of the hydrogen evolution reaction of YNS MXene in acidic media.

Phys Chem Chem Phys

January 2025

Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, Burjassot, 46100, Valencia, Spain.

The production of hydrogen (H) fuel through electrocatalysis is emerging as a sustainable alternative to conventional and environmentally harmful energy sources. However, the discovery of cost-effective and efficient materials for this purpose remains a significant challenge. In this study, we explore the potential of the transition-metal-substituted YNS MXene as a promising candidate for hydrogen production through the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

Orbital stabilisation effect in Sb-based single-atom catalyst.

Sci Bull (Beijing)

December 2024

Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!