A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aqueous-filled polymer microcavity arrays: versatile & stable lipid bilayer platforms offering high lateral mobility to incorporated membrane proteins. | LitMetric

AI Article Synopsis

  • An ideal supported lipid bilayer model requires unobstructed mobility for both lipids and membrane proteins, which is challenging in most methods.
  • A novel platform uses lipid bilayers over spherical cap microcavities, assembled on hydrophilic PDMS treated with plasma, ensuring better mobility for incorporated proteins.
  • Fluorescence Lifetime Correlation Spectroscopy confirmed that the bilayers show diffusion coefficients similar to free vesicles, and case studies on Glycophorin A and Integrin αIIbβ3 demonstrated full lateral mobility of the reconstituted proteins in the lipid bilayers.

Article Abstract

A key prerequisite in an ideal supported lipid bilayer based cell membrane model is that the mobility of both the lipid matrix and its components are unhindered by the underlying support. This is not trivial and with the exception of liposomes, many of even the most advanced approaches, although accomplishing lipid mobility, fail to achieve complete mobility of incorporated membrane proteins. This is addressed in a novel platform comprising lipid bilayers assembled over buffer-filled, arrays of spherical cap microcavities formed from microsphere template polydimethoxysilane. Prior to bilayer assembly the PDMS is rendered hydrophilic by plasma treatment and the lipid bilayer prepared using Langmuir Blodgett assembly followed by liposome/proteoliposome fusion. Fluorescence Lifetime Correlation Spectroscopy confirmed the pore suspended lipid bilayer exhibits diffusion coefficients comparable to free-standing vesicles in solution. The bilayer modified arrays are highly reproducible and stable over days. As the bilayers are suspended over deep aqueous reservoirs, reconstituted membrane proteins experience an aqueous interface at both membrane interfaces and attain full lateral mobility. Their utility as membrane protein platforms was exemplified in two case studies with proteins of different dimensions in their extracellular and cytoplasmic domains reconstituted into DOPC lipid bilayers; Glycophorin A, and Integrin αIIbβ3. In both cases, the proteins exhibited 100% mobility with high lateral diffusion coefficients.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4an02317jDOI Listing

Publication Analysis

Top Keywords

lipid bilayer
16
membrane proteins
12
lipid
8
high lateral
8
lateral mobility
8
mobility incorporated
8
incorporated membrane
8
lipid bilayers
8
diffusion coefficients
8
bilayer
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!